Keywords: lattice-ordered groups; $f$-rings; Specker groups
@article{CMJ_2001_51_2_a13,
author = {Conrad, Paul F. and Darnel, Michael R.},
title = {Subgroups and hulls of {Specker} lattice-ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {395--413},
year = {2001},
volume = {51},
number = {2},
mrnumber = {1844319},
zbl = {0978.06011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a13/}
}
Conrad, Paul F.; Darnel, Michael R. Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 395-413. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a13/
[1] P. F. Conrad: The hulls of representable $\ell $-groups and $f$-rings. J. Austral. Math. Soc. 16 (1973), 385–415. | DOI | MR
[2] P. F. Conrad: Epi-archimedean $\ell $-groups. Czechoslovak Math. J. 24 (1974), 192–218. | MR
[3] P. F. Conrad: The hulls of semiprime rings. Czechoslovak Math. J. 28 (1978), 59–86. | MR | Zbl
[4] P. F. Conrad and M. R. Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. | DOI | MR
[5] P. F. Conrad and M. R. Darnel: Countably valued lattice-ordered groups. Algebra Universalis 36 (1996), 81–107. | DOI | MR
[6] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. | MR
[7] P. F. Conrad and J. Martinez: Signatures and $S$-discrete lattice-ordered groups. Algebra Universalis 29 (1992), 521–545. | DOI | MR
[8] P. F. Conrad and D. McAlister: The completion of a $\ell $-group. J. Austral. Math. Soc. 9 (1969), 182–208. | DOI | MR
[9] M. R. Darnel: The Theory of Lattice-ordered Groups. Marcel Dekker, , 1995. | MR
[10] M. R. Darnel, M. Giraudet and S. H. McCleary: Uniqueness of the group operation on the lattice of order-automorphisms of the real line. Algebra Universalis 33 (1995), 419–427. | DOI | MR
[11] W. C. Holland: Partial orders of the group of automorphisms of the real line. Proc. International Conf. on Algebra, Part 1 (Novosibirsk, 1989), pp. 197–207. | MR | Zbl
[12] J. Jakubík: Lattice-ordered groups with unique addition must be archimedean. Czechoslovak Math. J. 41(116) (1991), 559–603. | MR
[13] S. Lin: Some Theorems on Lattice-ordered Groups. Dissertation, University of Kansas, 1991.
[14] C. Nobeling: Verallgemeinerung eines Satzes von Herrn E. Specker. Invent. Math. 6 (1968), 41–55. | DOI | MR
[15] S. Wolfenstein: Contribution à l’étude des groupes reticulés: Extensions archimédiennes, Groupes à valeurs normales. Thesis, Sci. Math. Paris, 1970.