Subgroups and hulls of Specker lattice-ordered groups
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 395-413 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, it will be shown that every $\ell $-subgroup of a Specker $\ell $-group has singular elements and that the class of $\ell $-groups that are $\ell $-subgroups of Specker $\ell $-group form a torsion class. Methods of adjoining units and bases to Specker $\ell $-groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker $\ell $-group.
In this article, it will be shown that every $\ell $-subgroup of a Specker $\ell $-group has singular elements and that the class of $\ell $-groups that are $\ell $-subgroups of Specker $\ell $-group form a torsion class. Methods of adjoining units and bases to Specker $\ell $-groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker $\ell $-group.
Classification : 06F15, 06F20, 06F25, 12J15, 46A40
Keywords: lattice-ordered groups; $f$-rings; Specker groups
@article{CMJ_2001_51_2_a13,
     author = {Conrad, Paul F. and Darnel, Michael R.},
     title = {Subgroups and hulls of {Specker} lattice-ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {395--413},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844319},
     zbl = {0978.06011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a13/}
}
TY  - JOUR
AU  - Conrad, Paul F.
AU  - Darnel, Michael R.
TI  - Subgroups and hulls of Specker lattice-ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 395
EP  - 413
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a13/
LA  - en
ID  - CMJ_2001_51_2_a13
ER  - 
%0 Journal Article
%A Conrad, Paul F.
%A Darnel, Michael R.
%T Subgroups and hulls of Specker lattice-ordered groups
%J Czechoslovak Mathematical Journal
%D 2001
%P 395-413
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a13/
%G en
%F CMJ_2001_51_2_a13
Conrad, Paul F.; Darnel, Michael R. Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 395-413. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a13/

[1] P. F. Conrad: The hulls of representable $\ell $-groups and $f$-rings. J.  Austral. Math. Soc. 16 (1973), 385–415. | DOI | MR

[2] P. F. Conrad: Epi-archimedean $\ell $-groups. Czechoslovak Math.  J. 24 (1974), 192–218. | MR

[3] P. F. Conrad: The hulls of semiprime rings. Czechoslovak Math. J. 28 (1978), 59–86. | MR | Zbl

[4] P. F. Conrad and M. R.  Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. | DOI | MR

[5] P. F. Conrad and M. R.  Darnel: Countably valued lattice-ordered groups. Algebra Universalis 36 (1996), 81–107. | DOI | MR

[6] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. | MR

[7] P. F. Conrad and J. Martinez: Signatures and $S$-discrete lattice-ordered groups. Algebra Universalis 29 (1992), 521–545. | DOI | MR

[8] P. F. Conrad and D.  McAlister: The completion of a $\ell $-group. J.  Austral. Math. Soc. 9 (1969), 182–208. | DOI | MR

[9] M. R. Darnel: The Theory of Lattice-ordered Groups. Marcel Dekker, , 1995. | MR

[10] M. R. Darnel, M.  Giraudet and S. H.  McCleary: Uniqueness of the group operation on the lattice of order-automorphisms of the real line. Algebra Universalis 33 (1995), 419–427. | DOI | MR

[11] W. C. Holland: Partial orders of the group of automorphisms of the real line. Proc. International Conf. on Algebra, Part  1 (Novosibirsk, 1989), pp.  197–207. | MR | Zbl

[12] J. Jakubík: Lattice-ordered groups with unique addition must be archimedean. Czechoslovak Math.  J. 41(116) (1991), 559–603. | MR

[13] S. Lin: Some Theorems on Lattice-ordered Groups. Dissertation, University of Kansas, 1991.

[14] C. Nobeling: Verallgemeinerung eines Satzes von Herrn E. Specker. Invent. Math. 6 (1968), 41–55. | DOI | MR

[15] S. Wolfenstein: Contribution à l’étude des groupes reticulés: Extensions archimédiennes, Groupes à valeurs normales. Thesis, Sci. Math. Paris, 1970.