Keywords: ergodic transformation; strongly mixing; Birkhoff ergodic theorem; Komlós theorem
@article{CMJ_2001_51_2_a11,
author = {Behrends, Ehrhard and Schmeling, J\"org},
title = {Strongly mixing sequences of measure preserving transformations},
journal = {Czechoslovak Mathematical Journal},
pages = {377--385},
year = {2001},
volume = {51},
number = {2},
mrnumber = {1844317},
zbl = {0980.28011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a11/}
}
Behrends, Ehrhard; Schmeling, Jörg. Strongly mixing sequences of measure preserving transformations. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 377-385. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a11/
[1] P. Billingsley: Probability and Measure. John Wiley & Sons, New York, 1995. | MR | Zbl
[2] J. Bourgain: Almost sure convergence and bounded entropy. Israel J. Math. 63 (1988), 79–97. | DOI | MR | Zbl
[3] J. Komlós: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar 18 (1967), 217–229. | DOI | MR
[4] J. M. Rosenblatt and M. Wierdl: Pointwise ergodic theorems via harmonic analysis. Ergodic theory and its connections with harmonic analysis, K. M. Petersen and I. A. Salama (eds.), London Math. Soc. Lecture Note Series 205, Cambridge Univ. Press, 1995. | MR
[5] F. Schweiger: Ergodic theory of fibred systems and metric number theory. Oxford Science Publications, 1995. | MR | Zbl
[6] P. Walters: An Introduction to Ergodic Theory. Springer, 1982. | MR | Zbl