Strongly mixing sequences of measure preserving transformations
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 377-385 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We call a sequence $(T_n)$ of measure preserving transformations strongly mixing if $P(T_n^{-1}A\cap B)$ tends to $P(A)P(B)$ for arbitrary measurable $A$, $B$. We investigate whether one can pass to a suitable subsequence $(T_{n_k})$ such that $\frac{1}{K} \sum _{k=1}^K f(T_{n_k}) \longrightarrow \int f \mathrm{d}P$ almost surely for all (or “many”) integrable $f$.
We call a sequence $(T_n)$ of measure preserving transformations strongly mixing if $P(T_n^{-1}A\cap B)$ tends to $P(A)P(B)$ for arbitrary measurable $A$, $B$. We investigate whether one can pass to a suitable subsequence $(T_{n_k})$ such that $\frac{1}{K} \sum _{k=1}^K f(T_{n_k}) \longrightarrow \int f \mathrm{d}P$ almost surely for all (or “many”) integrable $f$.
Classification : 28D05, 37A05, 37A25, 37A30
Keywords: ergodic transformation; strongly mixing; Birkhoff ergodic theorem; Komlós theorem
@article{CMJ_2001_51_2_a11,
     author = {Behrends, Ehrhard and Schmeling, J\"org},
     title = {Strongly mixing sequences of measure preserving transformations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {377--385},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844317},
     zbl = {0980.28011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a11/}
}
TY  - JOUR
AU  - Behrends, Ehrhard
AU  - Schmeling, Jörg
TI  - Strongly mixing sequences of measure preserving transformations
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 377
EP  - 385
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a11/
LA  - en
ID  - CMJ_2001_51_2_a11
ER  - 
%0 Journal Article
%A Behrends, Ehrhard
%A Schmeling, Jörg
%T Strongly mixing sequences of measure preserving transformations
%J Czechoslovak Mathematical Journal
%D 2001
%P 377-385
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a11/
%G en
%F CMJ_2001_51_2_a11
Behrends, Ehrhard; Schmeling, Jörg. Strongly mixing sequences of measure preserving transformations. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 377-385. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a11/

[1] P.  Billingsley: Probability and Measure. John Wiley & Sons, New York, 1995. | MR | Zbl

[2] J.  Bourgain: Almost sure convergence and bounded entropy. Israel J.  Math. 63 (1988), 79–97. | DOI | MR | Zbl

[3] J.  Komlós: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar 18 (1967), 217–229. | DOI | MR

[4] J. M.  Rosenblatt and M.  Wierdl: Pointwise ergodic theorems via harmonic analysis. Ergodic theory and its connections with harmonic analysis, K. M.  Petersen and I. A.  Salama (eds.), London Math. Soc. Lecture Note Series 205, Cambridge Univ. Press, 1995. | MR

[5] F. Schweiger: Ergodic theory of fibred systems and metric number theory. Oxford Science Publications, 1995. | MR | Zbl

[6] P.  Walters: An Introduction to Ergodic Theory. Springer, 1982. | MR | Zbl