Annihilators in normal autometrized algebras
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 111-120 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concepts of an annihilator and a relative annihilator in an autometrized $l$-algebra are introduced. It is shown that every relative annihilator in a normal autometrized $l$-algebra $\mathcal {A}$ is an ideal of $\mathcal {A}$ and every principal ideal of $\mathcal {A}$ is an annihilator of $\mathcal {A}$. The set of all annihilators of $\mathcal {A}$ forms a complete lattice. The concept of an $I$-polar is introduced for every ideal $I$ of $\mathcal {A}$. The set of all $I$-polars is a complete lattice which becomes a two-element chain provided $I$ is prime. The $I$-polars are characterized as pseudocomplements in the lattice of all ideals of $\mathcal {A}$ containing $I$.
The concepts of an annihilator and a relative annihilator in an autometrized $l$-algebra are introduced. It is shown that every relative annihilator in a normal autometrized $l$-algebra $\mathcal {A}$ is an ideal of $\mathcal {A}$ and every principal ideal of $\mathcal {A}$ is an annihilator of $\mathcal {A}$. The set of all annihilators of $\mathcal {A}$ forms a complete lattice. The concept of an $I$-polar is introduced for every ideal $I$ of $\mathcal {A}$. The set of all $I$-polars is a complete lattice which becomes a two-element chain provided $I$ is prime. The $I$-polars are characterized as pseudocomplements in the lattice of all ideals of $\mathcal {A}$ containing $I$.
Classification : 06F05
Keywords: autometrized algebra; annihilator; relative annihilator; ideal; polar
@article{CMJ_2001_51_1_a9,
     author = {Chajda, Ivan and Rach\r{u}nek, Ji\v{r}{\'\i}},
     title = {Annihilators in normal autometrized algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {111--120},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814636},
     zbl = {1079.06502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a9/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Rachůnek, Jiří
TI  - Annihilators in normal autometrized algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 111
EP  - 120
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a9/
LA  - en
ID  - CMJ_2001_51_1_a9
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Rachůnek, Jiří
%T Annihilators in normal autometrized algebras
%J Czechoslovak Mathematical Journal
%D 2001
%P 111-120
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a9/
%G en
%F CMJ_2001_51_1_a9
Chajda, Ivan; Rachůnek, Jiří. Annihilators in normal autometrized algebras. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a9/

[1] R. Balbes and P. Dwinger: Distributive Lattices. Univ. of Missouri Press, 1974. | MR

[2] I. Chajda: Indexed annihilators in lattices. Arch. Math.  (Brno) 31 (1995), 259–262. | MR | Zbl

[3] M. E. Hansen: Minimal prime ideals in autometrized algebras. Czechoslovak Math. J. 44 (119) (1994), 81–90. | MR | Zbl

[4] T. Kovář: Normal autometrized $l$-algebras. Math. Slovaca (to appear). | MR

[5] M. Mandelker: Relative annihilators in lattices. Duke Math. J. 49 (1979), 377–386. | MR

[6] J. Rachůnek: Prime ideals in autometrized algebras. Czechoslovak Math.  J. 37 (112) (1987), 65–69. | MR

[7] J. Rachůnek: Polars in autometrized algebras. Czechoslovak Math.  J. 39 (114) (1989), 681–685. | MR

[8] K. L. N. Swamy: A general theory of autometrized algebras. Math. Ann. 157 (1964), 65–74. | DOI | MR | Zbl

[9] K. L. N. Swamy and N. P. Rao: Ideals in autometrized algebras. J.  Austral. Math. Soc. (Ser. A) 24 (1977), 362–374. | DOI | MR