Keywords: variational measures and derivates of set functions; Riemann generalized integrals
@article{CMJ_2001_51_1_a8,
author = {Di Piazza, Luisa},
title = {Variational measures in the theory of the integration in $\mathbb R^m$},
journal = {Czechoslovak Mathematical Journal},
pages = {95--110},
year = {2001},
volume = {51},
number = {1},
mrnumber = {1814635},
zbl = {1079.28500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a8/}
}
Di Piazza, Luisa. Variational measures in the theory of the integration in $\mathbb R^m$. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 95-110. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a8/
[1] B. Bongiorno: Essential variation. Measure Theory Oberwolfach 1981. Lecture Notes in Math. No. 945, Springer-Verlag, Berlin, 1981, pp. 187–193. | MR
[BDP] B. Bongiorno, L. Di Piazza and D. Preiss: Infinite variation and derivates in ${R}^m$. J. Math. Anal. Appl. 224 (1998), 22–33. | DOI | MR
[3] B. Bongiorno, L. Di Piazza and V. Skvortsov: The essential variation of a function and some convergence theorems. Anal. Math. 22 (1996), 3–12. | DOI | MR
[BDS] B. Bongiorno, L. Di Piazza and V. Skvortsov: A new full descriptive characterization of Denjoy-Perron integral. Real Anal. Exchange 21 (1995–96), 656–663. | MR
[2] Z. Buczolich and W. F. Pfeffer: On absolute continuity. J. Math. Anal. Appl. 222 (1998), 64–78. | DOI | MR
[4] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (120) (1995), 79–106. | MR
[5] J. Jarník and J. Kurzweil: Differentiability and integrability in $n$-dimension with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151. | DOI | MR
[6] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czechoslovak Math. J. 31 (106) (1981), 614–632. | MR | Zbl
[Mc] E. J. McShane: Unified integration. Academic Press, New York, 1983. | MR | Zbl
[O] K. M. Ostaszewski: Henstock integration in the plane. Mem. Amer. Math. Soc. 253 (1986). | MR | Zbl
[7] W. F. Pfeffer: The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993. | MR | Zbl
[P] W. F. Pfeffer: On variation of functions of one real variable. Comment. Math. Univ. Carolin. 38 (1997), 61–71. | MR
[8] W. F. Pfeffer: On additive continuous functions of figures. Rend. Instit. Mat. Univ. Trieste, suppl. 29 (1998), 115–133. | MR | Zbl
[9] W. Rudin: Real and complex analysis. McGraw-Hill, New York, 1987. | MR | Zbl
[10] S. Saks: Theory of the integral. Dover, New York, 1964. | MR
[11] B. S. Thomson: Derivates of intervals functions. Mem. Amer. Math. Soc. 452 (1991). | MR