$A$-projective resolutions and an Azumaya theorem for a class of mixed abelian groups
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 73-93 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 20K21, 20K25, 20K27, 20K40
@article{CMJ_2001_51_1_a7,
     author = {Albrecht, Ulrich},
     title = {$A$-projective resolutions and an {Azumaya} theorem for a class of mixed abelian groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {73--93},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814634},
     zbl = {1079.20503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a7/}
}
TY  - JOUR
AU  - Albrecht, Ulrich
TI  - $A$-projective resolutions and an Azumaya theorem for a class of mixed abelian groups
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 73
EP  - 93
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a7/
LA  - en
ID  - CMJ_2001_51_1_a7
ER  - 
%0 Journal Article
%A Albrecht, Ulrich
%T $A$-projective resolutions and an Azumaya theorem for a class of mixed abelian groups
%J Czechoslovak Mathematical Journal
%D 2001
%P 73-93
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a7/
%G en
%F CMJ_2001_51_1_a7
Albrecht, Ulrich. $A$-projective resolutions and an Azumaya theorem for a class of mixed abelian groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 73-93. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a7/

[ALBR] U. Albrecht: Endomorphism rings of faithfully flat abelian groups of infinite rank. Results Math. 17 (1990), 179–201. | DOI | MR

[ALBR3] U. Albrecht: On the construction of $A$-solvable abelian groups. Czechoslovak Math. J. 44 (1994), 413–430. | MR

[AGW] U. Albrecht, H. P. Goeters and W. Wickless: The flat dimension of mixed abelian groups as $E$-modules. Rocky Mountain J. Math. 25 (1995), 569–590. | DOI | MR

[AF] F. Anderson and K. Fuller: Rings and Categories of Modules. Springer Verlag, 1992. | MR

[Ar] D. Arnold: Abelian groups flat over their endomorphism ring. Preprint.

[AHR] D. Arnold, R. Hunter and F. Richman: Global Azumaya theorems in additive categories. J. Pure Appl. Algebra 16 (1980), 232–242. | DOI | MR

[AL] D. Arnold and L. Lady: Endomorphism rings and direct sums of torsion-free abelian groups. Trans. Amer. Math. Soc. 211 (1975), 225–237. | DOI | MR

[B] R. Baer: Abelian groups without elements of finite order. Duke Math. J. 3 (1937), 68–122. | DOI | MR | Zbl

[DG] M. Dugas and R. Goebel: Every cotorsion-free ring is an endomorphism ring. Proc. London Math. Soc. 45 (1982), 319–336. | MR

[Fu] L. Fuchs: Infinite Abelian Groups. Academic Press, New York, London, 1970/73. | MR

[GW] S. Glaz and W. Wickless: Regular and principal projective endomorphism rings of mixed abelian groups. (to appear). | MR

[Gr] P. Griffith: Infinite Abelian Groups. Chicago Lectures in Mathematics, 1970. | MR

[HRW] R. Hunter, F. Richman and E. Walker: Warfield modules. LNM 616, Springer, 1977, pp. 87–139. | MR

[Ka] I. Kaplansky: Projective modules. Ann. of Math. 68 (1958), 372–377. | DOI | MR | Zbl

[Ku] L. Kulikov: On direct decompositions of groups. Ukrain. Mat. Zh. 4 (1952), 230–275, 347–372. | MR

[ST] B. Stenström: Ring of Quotients. Springer Verlag, Berlin, Heidelberg, New York, 1975. | MR

[U] F. Ulmer: A flatness criterion in Grothendick categories. Invent. Math. 19 (1973), 331–336. | DOI | MR

[W] W. Wickless: A functor from mixed groups to torsion-free groups. Contemp. Math. 171 (1994), 407–417. | DOI | MR | Zbl