@article{CMJ_2001_51_1_a6,
author = {Rivera, Mar{\'\i}a J.},
title = {On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$},
journal = {Czechoslovak Mathematical Journal},
pages = {67--72},
year = {2001},
volume = {51},
number = {1},
mrnumber = {1814633},
zbl = {1079.46513},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a6/}
}
TY - JOUR AU - Rivera, María J. TI - On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$ JO - Czechoslovak Mathematical Journal PY - 2001 SP - 67 EP - 72 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a6/ LA - en ID - CMJ_2001_51_1_a6 ER -
Rivera, María J. On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a6/
[1] Ch. J. de la Vallée Poussin: Sur l’integrale de Lebesgue. Trans. Amer. Math. Soc. 16 (1915), 435–501. | DOI | MR
[2] L. Drewnowski and G. Emmanuelle: The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_0$. Studia Math. 104 (1993), 110–123. | MR
[3] G. Emmanuelle: On complemented copies of $c_0$ in $L_{X}^{p}$, $1 \le p < \infty $. Proc. Amer. Math. Soc. 104, 785–786.
[4] J. C. Ferrando: Copies of $c_0$ in certain vector-valued function Banach spaces. Math. Scand. 77 (1995), 148–152. | DOI | MR
[5] J. Mendoza: Copies of $\ell _{\infty }$ in $L^{p} (\mu ;X)$. Proc. Amer. Math. Soc. 109 (1990), 125–127. | MR
[6] M. M. Rao and Z. D. Ren: Theory of Orlicz Spaces. Marcel Dekker Inc., 1991. | MR
[7] H. P. Rosenthal: On relatively disjoint families of measures with some applications to Banach spaces theory. Studia Math. 37 (1970), 13–16. | DOI | MR
[8] J. J. Uhl Jr.: Orlicz spaces of finitely additive set functions. Studia Math. XXIX (1967), 19–58. | MR | Zbl