End-faithful spanning trees of countable graphs with prescribed sets of rays
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 45-53 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that a countable connected graph has an end-faithful spanning tree that contains a prescribed set of rays whenever this set is countable, and we show that this solution is, in a certain sense, the best possible. This improves a result of Hahn and Širáň Theorem 1.
We prove that a countable connected graph has an end-faithful spanning tree that contains a prescribed set of rays whenever this set is countable, and we show that this solution is, in a certain sense, the best possible. This improves a result of Hahn and Širáň Theorem 1.
Classification : 05C05, 05C25, 05C38, 05C99
@article{CMJ_2001_51_1_a4,
     author = {Polat, Norbert},
     title = {End-faithful spanning trees of countable graphs with prescribed sets of rays},
     journal = {Czechoslovak Mathematical Journal},
     pages = {45--53},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814631},
     zbl = {1079.05508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a4/}
}
TY  - JOUR
AU  - Polat, Norbert
TI  - End-faithful spanning trees of countable graphs with prescribed sets of rays
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 45
EP  - 53
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a4/
LA  - en
ID  - CMJ_2001_51_1_a4
ER  - 
%0 Journal Article
%A Polat, Norbert
%T End-faithful spanning trees of countable graphs with prescribed sets of rays
%J Czechoslovak Mathematical Journal
%D 2001
%P 45-53
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a4/
%G en
%F CMJ_2001_51_1_a4
Polat, Norbert. End-faithful spanning trees of countable graphs with prescribed sets of rays. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a4/

[1] H. Freudenthal: Über die Enden diskreter Räume und Gruppe. Comment. Math. Helv. 17 (1944), 1–38. | DOI | MR

[2] G. Hahn and J. Širáň: Three remarks on end-faithfulness. Finite and Infinite Combinatorics in Sets and Logic, N. Sauer et al. (eds.), Kluwer, 1993, pp. 125–133. | MR

[3] R. Halin: Über unendliche Wege in Graphen. Math. Ann. 157 (1964), 125–137. | DOI | MR | Zbl

[4] H. Hopf: Enden offener Raüme und unendliche diskontinuierliche Gruppen. Comm. Math. Helv. 15 (1943), 27–32. | MR

[5] N. Polat: Développements terminaux des graphes infinis I. Arbres maximaux coterminaux. Math. Nachr. 107 (1982), 283–314. | DOI | MR | Zbl

[6] N. Polat: Ends and multi-endings. I. J. Combin. Theory Ser. B 67 (1996), 86–110. | DOI | MR | Zbl

[7] N. Polat: Ends and multi-endings. II. J. Combin. Theory Ser. B 68 (1996), 56–86. | DOI | MR | Zbl

[8] P. Seymour and R. Thomas: An end-faithful spanning tree counterexample. Discrete Math. 95 (1991), 321–330. | DOI | MR

[9] J. Širáň: End-faithful forests and spanning trees in infinite graphs. Discrete Math. 95 (1991), 331–340. | DOI | MR

[10] C. Thomassen: Infinite connected graphs with no end-preserving spanning trees. J. Combin. Theory Ser. B 54 (1992), 322–324. | DOI | MR | Zbl