@article{CMJ_2001_51_1_a4,
author = {Polat, Norbert},
title = {End-faithful spanning trees of countable graphs with prescribed sets of rays},
journal = {Czechoslovak Mathematical Journal},
pages = {45--53},
year = {2001},
volume = {51},
number = {1},
mrnumber = {1814631},
zbl = {1079.05508},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a4/}
}
Polat, Norbert. End-faithful spanning trees of countable graphs with prescribed sets of rays. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a4/
[1] H. Freudenthal: Über die Enden diskreter Räume und Gruppe. Comment. Math. Helv. 17 (1944), 1–38. | DOI | MR
[2] G. Hahn and J. Širáň: Three remarks on end-faithfulness. Finite and Infinite Combinatorics in Sets and Logic, N. Sauer et al. (eds.), Kluwer, 1993, pp. 125–133. | MR
[3] R. Halin: Über unendliche Wege in Graphen. Math. Ann. 157 (1964), 125–137. | DOI | MR | Zbl
[4] H. Hopf: Enden offener Raüme und unendliche diskontinuierliche Gruppen. Comm. Math. Helv. 15 (1943), 27–32. | MR
[5] N. Polat: Développements terminaux des graphes infinis I. Arbres maximaux coterminaux. Math. Nachr. 107 (1982), 283–314. | DOI | MR | Zbl
[6] N. Polat: Ends and multi-endings. I. J. Combin. Theory Ser. B 67 (1996), 86–110. | DOI | MR | Zbl
[7] N. Polat: Ends and multi-endings. II. J. Combin. Theory Ser. B 68 (1996), 56–86. | DOI | MR | Zbl
[8] P. Seymour and R. Thomas: An end-faithful spanning tree counterexample. Discrete Math. 95 (1991), 321–330. | DOI | MR
[9] J. Širáň: End-faithful forests and spanning trees in infinite graphs. Discrete Math. 95 (1991), 331–340. | DOI | MR
[10] C. Thomassen: Infinite connected graphs with no end-preserving spanning trees. J. Combin. Theory Ser. B 54 (1992), 322–324. | DOI | MR | Zbl