A gradient estimate for solutions of the heat equation. II
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 39-44 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The author obtains an estimate for the spatial gradient of solutions of the heat equation, subject to a homogeneous Neumann boundary condition, in terms of the gradient of the initial data. The proof is accomplished via the maximum principle; the main assumption is that the sufficiently smooth boundary be convex.
The author obtains an estimate for the spatial gradient of solutions of the heat equation, subject to a homogeneous Neumann boundary condition, in terms of the gradient of the initial data. The proof is accomplished via the maximum principle; the main assumption is that the sufficiently smooth boundary be convex.
Classification : 35B45, 35B50, 35B65, 35K05, 35K20
Keywords: gradient estimate; heat equation; maximum principle
@article{CMJ_2001_51_1_a3,
     author = {Kahane, Charles S.},
     title = {A gradient estimate for solutions of the heat equation. {II}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {39--44},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814630},
     zbl = {1079.35037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a3/}
}
TY  - JOUR
AU  - Kahane, Charles S.
TI  - A gradient estimate for solutions of the heat equation. II
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 39
EP  - 44
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a3/
LA  - en
ID  - CMJ_2001_51_1_a3
ER  - 
%0 Journal Article
%A Kahane, Charles S.
%T A gradient estimate for solutions of the heat equation. II
%J Czechoslovak Mathematical Journal
%D 2001
%P 39-44
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a3/
%G en
%F CMJ_2001_51_1_a3
Kahane, Charles S. A gradient estimate for solutions of the heat equation. II. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a3/