Keywords: Pontryagin duality theorem; dual group; convergence group; continuous convergence; reflexive group; strong reflexive group; k-space; Čech complete group; k-group
@article{CMJ_2001_51_1_a20,
author = {Bruguera, Montserrat and Chasco, Mar{\'\i}a Jes\'us},
title = {Strong reflexivity of {Abelian} groups},
journal = {Czechoslovak Mathematical Journal},
pages = {213--224},
year = {2001},
volume = {51},
number = {1},
mrnumber = {1814647},
zbl = {1079.22500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a20/}
}
Bruguera, Montserrat; Chasco, María Jesús. Strong reflexivity of Abelian groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 213-224. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a20/
[1] W. Banaszczyk: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics 1466. Springer-Verlag, Berlin-Heidelberg-New York, 1991. | MR
[2] E. Binz: Continuous Convergence in $C(X)$. Lecture Notes in Mathematics 469. Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR
[3] R. Brown, P. J. Higgins and S. A. Morris: Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties. Math. Proc. Camb. Phil. Soc. 78 (1975), 19–32. | DOI | MR
[4] H. P. Butzmann: Pontryagin duality for convergence groups of unimodular continuous functions. Czechoslovak Math. J. 33 (1983), 212–220. | MR | Zbl
[5] H. P. Butzmann: $c$-Duality Theory for Convergence Groups. Lecture in the Course “Convergence and Topology”. Erice, 1998.
[6] M. J. Chasco: Pontryagin duality for metrizable groups. Arch. Math. 70 (1998), 22–28. | DOI | MR | Zbl
[7] M. J. Chasco and E. Martín-Peinador: Binz-Butzmann duality versus Pontryagin duality. Arch. Math. 63 (1994), 264–270. | DOI | MR
[8] C. H. Cook and H. R. Fischer: On equicontinuity and continuous convergence. Math. Ann. 159 (1965), 94–104. | DOI | MR
[9] H. R. Fischer: Limesräume. Math. Ann. 137 (1959), 269–303. | MR | Zbl
[10] S. Kaplan: Extensions of the Pontryagin duality I: Infinite products. B. G. Duke Math. 15 (1948), 649–658. | MR
[11] H. Leptin: Bemerkung zu einem Satz von S. Kaplan. B. G. Arch. der Math. 6 (1955), 264–268. | MR | Zbl
[12] E. Martín-Peinador: A reflexive admissible topological group must be locally compact. Proc. Amer. Math. Soc. 123 (1995), 3563–3566. | DOI | MR
[13] N. Noble: $K$-groups and duality. Trans. Amer. Math. Soc. 151 (1970), 551–561. | MR | Zbl
[14] N. Roelcke and S. Dierolf: Uniform Structures on Topological Groups and Their Quotients. Advanced Book Program. McGraw-Hill International Book Company, 1981. | MR