Strong reflexivity of Abelian groups
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 213-224 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A reflexive topological group $G$ is called strongly reflexive if each closed subgroup and each Hausdorff quotient of the group $G$ and of its dual group is reflexive. In this paper we establish an adequate concept of strong reflexivity for convergence groups. We prove that complete metrizable nuclear groups and products of countably many locally compact topological groups are BB-strongly reflexive.
A reflexive topological group $G$ is called strongly reflexive if each closed subgroup and each Hausdorff quotient of the group $G$ and of its dual group is reflexive. In this paper we establish an adequate concept of strong reflexivity for convergence groups. We prove that complete metrizable nuclear groups and products of countably many locally compact topological groups are BB-strongly reflexive.
Classification : 20K45, 22A05, 46A16, 46A99
Keywords: Pontryagin duality theorem; dual group; convergence group; continuous convergence; reflexive group; strong reflexive group; k-space; Čech complete group; k-group
@article{CMJ_2001_51_1_a20,
     author = {Bruguera, Montserrat and Chasco, Mar{\'\i}a Jes\'us},
     title = {Strong reflexivity of {Abelian} groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {213--224},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814647},
     zbl = {1079.22500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a20/}
}
TY  - JOUR
AU  - Bruguera, Montserrat
AU  - Chasco, María Jesús
TI  - Strong reflexivity of Abelian groups
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 213
EP  - 224
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a20/
LA  - en
ID  - CMJ_2001_51_1_a20
ER  - 
%0 Journal Article
%A Bruguera, Montserrat
%A Chasco, María Jesús
%T Strong reflexivity of Abelian groups
%J Czechoslovak Mathematical Journal
%D 2001
%P 213-224
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a20/
%G en
%F CMJ_2001_51_1_a20
Bruguera, Montserrat; Chasco, María Jesús. Strong reflexivity of Abelian groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 213-224. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a20/

[1] W. Banaszczyk: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics 1466. Springer-Verlag, Berlin-Heidelberg-New York, 1991. | MR

[2] E. Binz: Continuous Convergence in $C(X)$. Lecture Notes in Mathematics 469. Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR

[3] R. Brown, P. J. Higgins and S. A. Morris: Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties. Math. Proc. Camb. Phil. Soc. 78 (1975), 19–32. | DOI | MR

[4] H. P. Butzmann: Pontryagin duality for convergence groups of unimodular continuous functions. Czechoslovak Math. J. 33 (1983), 212–220. | MR | Zbl

[5] H. P. Butzmann: $c$-Duality Theory for Convergence Groups. Lecture in the Course “Convergence and Topology”. Erice, 1998.

[6] M. J. Chasco: Pontryagin duality for metrizable groups. Arch. Math. 70 (1998), 22–28. | DOI | MR | Zbl

[7] M. J. Chasco and E. Martín-Peinador: Binz-Butzmann duality versus Pontryagin duality. Arch. Math. 63 (1994), 264–270. | DOI | MR

[8] C. H. Cook and H. R. Fischer: On equicontinuity and continuous convergence. Math. Ann. 159 (1965), 94–104. | DOI | MR

[9] H. R. Fischer: Limesräume. Math. Ann. 137 (1959), 269–303. | MR | Zbl

[10] S. Kaplan: Extensions of the Pontryagin duality I: Infinite products. B. G. Duke Math. 15 (1948), 649–658. | MR

[11] H. Leptin: Bemerkung zu einem Satz von S. Kaplan. B. G.  Arch. der Math. 6 (1955), 264–268. | MR | Zbl

[12] E. Martín-Peinador: A reflexive admissible topological group must be locally compact. Proc. Amer. Math. Soc. 123 (1995), 3563–3566. | DOI | MR

[13] N. Noble: $K$-groups and duality. Trans. Amer. Math. Soc. 151 (1970), 551–561. | MR | Zbl

[14] N. Roelcke and S. Dierolf: Uniform Structures on Topological Groups and Their Quotients. Advanced Book Program. McGraw-Hill International Book Company, 1981. | MR