Multifibrations. A class of shape fibrations with the path lifting property
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 29-38 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce a class of maps possessing a multivalued homotopy lifting property with respect to every topological space. We call these maps multifibrations and they represent a formally stronger concept than that of shape fibration. Multifibrations have the interesting property of being characterized in a completely intrinsic way by a path lifting property involving only the total and the base space of the fibration. We also show that multifibrations (and also, with some restrictions, shape fibrations) have a lifting property for homotopies of fine multivalued maps. This implies, when the spaces considered are metric compacta, that the possibility of lifting a fine multivalued map is a property of the corresponding strong shape morphism and not of the particular map considered.
In this paper we introduce a class of maps possessing a multivalued homotopy lifting property with respect to every topological space. We call these maps multifibrations and they represent a formally stronger concept than that of shape fibration. Multifibrations have the interesting property of being characterized in a completely intrinsic way by a path lifting property involving only the total and the base space of the fibration. We also show that multifibrations (and also, with some restrictions, shape fibrations) have a lifting property for homotopies of fine multivalued maps. This implies, when the spaces considered are metric compacta, that the possibility of lifting a fine multivalued map is a property of the corresponding strong shape morphism and not of the particular map considered.
Classification : 54C56, 55P55, 55R05
Keywords: shape fibration; multivalued map; path lifting property; strong shape
@article{CMJ_2001_51_1_a2,
     author = {Giraldo, Antonio and Sanjurjo, Jose M. R.},
     title = {Multifibrations. {A} class of shape fibrations with the path lifting property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {29--38},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814629},
     zbl = {1079.55503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a2/}
}
TY  - JOUR
AU  - Giraldo, Antonio
AU  - Sanjurjo, Jose M. R.
TI  - Multifibrations. A class of shape fibrations with the path lifting property
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 29
EP  - 38
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a2/
LA  - en
ID  - CMJ_2001_51_1_a2
ER  - 
%0 Journal Article
%A Giraldo, Antonio
%A Sanjurjo, Jose M. R.
%T Multifibrations. A class of shape fibrations with the path lifting property
%J Czechoslovak Mathematical Journal
%D 2001
%P 29-38
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a2/
%G en
%F CMJ_2001_51_1_a2
Giraldo, Antonio; Sanjurjo, Jose M. R. Multifibrations. A class of shape fibrations with the path lifting property. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a2/

[B1] K. Borsuk: On movable compacta. Fund. Math. 66 (1969), 137–146. | DOI | MR | Zbl

[B2] K. Borsuk: Theory of Shape (Monografie Matematyczne 59). Polish Scientific Publishers, Warszawa, 1975. | MR

[C] F. W. Cathey: Shape fibrations and strong shape theory. Topology Appl. 14 (1982), 13–30. | DOI | MR | Zbl

[Č1] Z. Čerin: Shape theory intrinsically. Publ. Mat. 37 (1993), 317–334. | DOI | MR

[Č2] Z. Čerin: Proximate topology and shape theory. Proc. Roy. Soc. Edinburgh 125 (1995), 595–615. | DOI | MR

[Č3] Z. Čerin: Approximate fibrations. To appear.

[CD] D. Coram and P. F. Duvall, Jr.: Approximate fibrations. Rocky Mountain J. Math. 7 (1977), 275–288. | DOI | MR

[CP] J. M. Cordier and T. Porter: Shape Theory. Categorical Methods of Approximation (Ellis Horwood Series: Mathematics and its Applications). Ellis Horwood Ltd., Chichester, 1989. | MR

[DS1] J. Dydak and J. Segal: Shape Theory: An Introduction (Lecture Notes in Math. 688). Springer-Verlag, Berlin, 1978. | MR

[DS2] J. Dydak and J. Segal: A list of open problems in shape theory. J. Van Mill and G. M. Reed: Open problems in Topology, North Holland, Amsterdam, 1990, pp. 457–467. | MR

[F] J. E. Felt: $\epsilon $-continuity and shape. Proc. Amer. Math. Soc. 46 (1974), 426–430. | MR

[G] A. Giraldo: Shape fibrations, multivalued maps and shape groups. Canad. J. Math 50 (1998), 342–355. | DOI | MR | Zbl

[GS] A. Giraldo and J. M. R. Sanjurjo: Strong multihomotopy and Steenrod loop spaces. J. Math. Soc. Japan. 47 (1995), 475–489. | DOI | MR

[K] R. W. Kieboom: An intrinsic characterization of the shape of paracompacta by means of non-continuous single-valued maps. Bull. Belg. Math. Soc. 1 (1994), 701–711. | DOI | MR | Zbl

[Ku] K. Kuratowski: Topology I. Academic Press, New York, 1966. | MR

[M] S. Mardešić: Approximate fibrations and shape fibrations. Proc. of the International Conference on Geometric Topology, PWN, Polish Scientific Publishers, 1980, pp. 313–322. | MR

[MR1] S. Mardešić and T. B. Rushing: Shape fibrations. General Topol. Appl. 9 (1978), 193–215. | DOI | MR

[MR2] S. Mardešić and T. B. Rushing: Shape fibrations II. Rocky Mountain J. Math. 9 (1979), 283–298. | DOI | MR

[MS] S. Mardešić and J. Segal: Shape Theory. North Holland, Amsterdam, 1982. | MR

[Mi] E. Michael: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182. | DOI | MR | Zbl

[MoR] M. A. Morón and F. R. Ruiz del Portal: Multivalued maps and shape for paracompacta. Math. Japon. 39 (1994), 489–500. | MR

[S1] J. M. R. Sanjurjo: A non-continuous description of the shape category of compacta. Quart. J. Math. Oxford (2) 40 (1989), 351–359. | MR | Zbl

[S2] J. M. R. Sanjurjo: Multihomotopy sets and transformations induced by shape. Quart. J. Math. Oxford (2) 42 (1991), 489–499. | MR | Zbl

[S3] J. M. R. Sanjurjo: An intrinsic description of shape. Trans. Amer. Math. Soc. 329 (1992), 625–636. | DOI | MR | Zbl

[S4] J. M. R. Sanjurjo: Multihomotopy, Čech spaces of loops and shape groups. Proc. London Math. Soc. (3) 69 (1994), 330–344. | MR | Zbl