Strong retracts of unary algebras
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 205-212 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper introduces the notion of a strong retract of an algebra and then focuses on strong retracts of unary algebras. We characterize subuniverses of a unary algebra which are carriers of its strong retracts. This characterization enables us to describe the poset of strong retracts of a unary algebra under inclusion. Since this poset is not necessarily a lattice, we give a necessary and sufficient condition for the poset to be a lattice, as well as the full description of the poset.
This paper introduces the notion of a strong retract of an algebra and then focuses on strong retracts of unary algebras. We characterize subuniverses of a unary algebra which are carriers of its strong retracts. This characterization enables us to describe the poset of strong retracts of a unary algebra under inclusion. Since this poset is not necessarily a lattice, we give a necessary and sufficient condition for the poset to be a lattice, as well as the full description of the poset.
Classification : 08A35, 08A60
Keywords: inflations of algebras; retracts of algebras; unary algebras
@article{CMJ_2001_51_1_a19,
     author = {Madar\'asz, Roz\'alia Sz. and Ma\v{s}ulovi\'c, Dragan and Tasi\'c, Bo\v{z}a},
     title = {Strong retracts of unary algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {205--212},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814646},
     zbl = {1079.08502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a19/}
}
TY  - JOUR
AU  - Madarász, Rozália Sz.
AU  - Mašulović, Dragan
AU  - Tasić, Boža
TI  - Strong retracts of unary algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 205
EP  - 212
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a19/
LA  - en
ID  - CMJ_2001_51_1_a19
ER  - 
%0 Journal Article
%A Madarász, Rozália Sz.
%A Mašulović, Dragan
%A Tasić, Boža
%T Strong retracts of unary algebras
%J Czechoslovak Mathematical Journal
%D 2001
%P 205-212
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a19/
%G en
%F CMJ_2001_51_1_a19
Madarász, Rozália Sz.; Mašulović, Dragan; Tasić, Boža. Strong retracts of unary algebras. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 205-212. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a19/

[baris] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981. | MR

[riv3] D. Duffus and I. Rival: A structure theory for ordered sets. Discrete Math. 35 (1981), 53–118. | DOI | MR

[eva] E. Graczynska: EIS for nilpotent shifts of varieties. General Algebra & Applications (Research & Exposition in Math. vol. 20), K. Denecke, H.-J. Vogel (eds.), Heldermann Verlag, Berlin, 1993, pp. 116–120. | MR | Zbl

[halk] K. Halkowska: On some operators defined on equational classes of algebras. Arch. Math. 12 (1976), 209–212. | MR

[jak1] D. Jakubíková-Studenovská: Retract irreducibility of connected monounary algebras I. Czechoslovak Math. J. 46 (121) (1996, 291–308). | MR

[jak2] D. Jakubíková-Studenovská: Retract irreducibility of connected monounary algebras II. Czechoslovak Math. J. 47 (1997), 113–126. | DOI | MR

[jak3] D. Jakubíková-Studenovská: Retract varieties of monounary algebras. Czechoslovak Math. J. 47 (122) (1997), 701–716. | DOI | MR

[jak4] D. Jakubíková-Studenovská: Two types of retract irreducibility of connected monounary algebras. Math. Bohem. (121) (1996), 143–150. | MR

[jak5] D. Jakubíková-Studenovská: Antiatomic retract varieties of monounary algebras. Czechoslovak Math. J. 48 (1998), 793–808. | DOI | MR

[mel] I. I. Mel’nik: Nilpotent shifts of varieties. Mat. Zametki 14 (1973), no. 5, 703–712. (Russian) | MR

[riv2] R. Nowakowski and I. Rival: The smallest graph variety containing all paths. Discrete Math. 43 (1983), 223–234. | DOI | MR

[past] F. J. Pastijn: Constructions of varieties that satisfy the amalgamation property or the congruence extension property. Studia Sci. Math. Hungar. 17 (1982), 101–111. | MR | Zbl

[plo] J. Plonka: On the subdirect product of some equational classes of algebras. Math. Nachr. 63 (1974), 303–305. | DOI | MR | Zbl

[riv1] I. Rival and R. Wille: The smallest order variety containing all chains. Discrete Math. 35 (1981), 203–212. | DOI | MR

[tasa] V. Tasić: Some special identities. manuscript (1988), 1–10.

[viver] N. Weaver: Classes closed under isomorphisms, retractions and products. Algebra Universalis 30 (1993), 140–148. | DOI | MR | Zbl