Geometry of holomorphic distributions of real hypersurfaces in a complex projective space
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 197-204 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize homogeneous real hypersurfaces $M$’s of type $(A_1)$, $(A_2)$ and $(B)$ of a complex projective space in the class of real hypersurfaces by studying the holomorphic distribution $T^0M$ of $M$.
We characterize homogeneous real hypersurfaces $M$’s of type $(A_1)$, $(A_2)$ and $(B)$ of a complex projective space in the class of real hypersurfaces by studying the holomorphic distribution $T^0M$ of $M$.
Classification : 53B25, 53C40
Keywords: complex projective space; real hypersurfaces; holomorphic distribution
@article{CMJ_2001_51_1_a18,
     author = {Ki, U-Hang and Kimura, Makoto and Maeda, Sadahiro},
     title = {Geometry of holomorphic distributions of real hypersurfaces in a complex projective space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {197--204},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814645},
     zbl = {1079.53031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a18/}
}
TY  - JOUR
AU  - Ki, U-Hang
AU  - Kimura, Makoto
AU  - Maeda, Sadahiro
TI  - Geometry of holomorphic distributions of real hypersurfaces in a complex projective space
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 197
EP  - 204
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a18/
LA  - en
ID  - CMJ_2001_51_1_a18
ER  - 
%0 Journal Article
%A Ki, U-Hang
%A Kimura, Makoto
%A Maeda, Sadahiro
%T Geometry of holomorphic distributions of real hypersurfaces in a complex projective space
%J Czechoslovak Mathematical Journal
%D 2001
%P 197-204
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a18/
%G en
%F CMJ_2001_51_1_a18
Ki, U-Hang; Kimura, Makoto; Maeda, Sadahiro. Geometry of holomorphic distributions of real hypersurfaces in a complex projective space. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 197-204. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a18/

[1] T. Cecil and P. Ryan: Focal sets and real hypersurfaces in complex projective space. Trans.  Amer.  Math.  Soc. 269 (1982), 481–499. | MR

[2] M. Kimura: Real hypersurfaces and complex submanifolds in complex projective space. Trans.  Amer.  Math.  Soc. 296 (1986), 137–149. | DOI | MR | Zbl

[3] M. Kimura and S. Maeda: On real hypersurfaces of a complex projective space. Math.  Z. 202 (1989), 299–311. | DOI | MR

[4] M. Kimura and S. Maeda: Lie derivatives on real hypersurfaces in a complex projective space. Czechoslovak Math.  J. 45 (1995), 135–148. | MR

[5] Y. Maeda: On real hypersurfaces of a complex projective space. J.  Math.  Soc. Japan 28 (1976), 529–540. | DOI | MR | Zbl

[6] K. Ogiue: Differential geometry of Kaehler submanifolds. Adv. Math. 13 (1974), 73–114. | DOI | MR | Zbl

[7] R. Takagi: On homogeneous real hypersurfaces of a complex projective space. Osaka J.  Math.  10 (1973), 495–506. | MR

[8] R. Takagi: Real hypersurfaces in a complex projective space with constant principal curvatures I, II. J.  Math.  Soc.  Japan 27 (1975), 43–53, 507–516. | DOI | MR