Sequential completeness of LF-spaces
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 181-183 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Any LF-space is sequentially complete iff it is regular.
Any LF-space is sequentially complete iff it is regular.
Classification : 46A13, 46A30
Keywords: LB- and LF-space; regularity and sequential completeness of locally convex inductive limits
@article{CMJ_2001_51_1_a16,
     author = {Ku\v{c}era, Jan},
     title = {Sequential completeness of {LF-spaces}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {181--183},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814643},
     zbl = {1079.46502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a16/}
}
TY  - JOUR
AU  - Kučera, Jan
TI  - Sequential completeness of LF-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 181
EP  - 183
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a16/
LA  - en
ID  - CMJ_2001_51_1_a16
ER  - 
%0 Journal Article
%A Kučera, Jan
%T Sequential completeness of LF-spaces
%J Czechoslovak Mathematical Journal
%D 2001
%P 181-183
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a16/
%G en
%F CMJ_2001_51_1_a16
Kučera, Jan. Sequential completeness of LF-spaces. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 181-183. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a16/

[1] K. Floret: Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew. Math. 247 (1971), 155–195. | MR | Zbl

[2] J. Kučera and K. McKennon: Quasi-incomplete regular LB-space. Internat. J. Math. 16 (1993), 675–678. | DOI | MR

[3] B. M. Makarov: Pathological properties of inductive limits of Banach spaces. Uspekhi Mat. Nauk 18 (1963), 171–178. | MR

[4] J. Mujica: Functional analysis, holomorphy and approximation theory II. North Holland, 1984. | MR

[5] M. de Wilde: Closed graph theorems and webbed spaces. Pitman, London, 1978. | Zbl