Sequential completeness of LF-spaces
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 181-183
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Any LF-space is sequentially complete iff it is regular.
Any LF-space is sequentially complete iff it is regular.
Classification :
46A13, 46A30
Keywords: LB- and LF-space; regularity and sequential completeness of locally convex inductive limits
Keywords: LB- and LF-space; regularity and sequential completeness of locally convex inductive limits
@article{CMJ_2001_51_1_a16,
author = {Ku\v{c}era, Jan},
title = {Sequential completeness of {LF-spaces}},
journal = {Czechoslovak Mathematical Journal},
pages = {181--183},
year = {2001},
volume = {51},
number = {1},
mrnumber = {1814643},
zbl = {1079.46502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a16/}
}
Kučera, Jan. Sequential completeness of LF-spaces. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 181-183. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a16/
[1] K. Floret: Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew. Math. 247 (1971), 155–195. | MR | Zbl
[2] J. Kučera and K. McKennon: Quasi-incomplete regular LB-space. Internat. J. Math. 16 (1993), 675–678. | DOI | MR
[3] B. M. Makarov: Pathological properties of inductive limits of Banach spaces. Uspekhi Mat. Nauk 18 (1963), 171–178. | MR
[4] J. Mujica: Functional analysis, holomorphy and approximation theory II. North Holland, 1984. | MR
[5] M. de Wilde: Closed graph theorems and webbed spaces. Pitman, London, 1978. | Zbl