Subfields of lattice-ordered fields that mimic maximal totally ordered subfields
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 143-161 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06F25, 12J15
@article{CMJ_2001_51_1_a13,
     author = {Redfield, R. H.},
     title = {Subfields of lattice-ordered fields that mimic maximal totally ordered subfields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {143--161},
     year = {2001},
     volume = {51},
     number = {1},
     mrnumber = {1814640},
     zbl = {1079.12005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a13/}
}
TY  - JOUR
AU  - Redfield, R. H.
TI  - Subfields of lattice-ordered fields that mimic maximal totally ordered subfields
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 143
EP  - 161
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a13/
LA  - en
ID  - CMJ_2001_51_1_a13
ER  - 
%0 Journal Article
%A Redfield, R. H.
%T Subfields of lattice-ordered fields that mimic maximal totally ordered subfields
%J Czechoslovak Mathematical Journal
%D 2001
%P 143-161
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a13/
%G en
%F CMJ_2001_51_1_a13
Redfield, R. H. Subfields of lattice-ordered fields that mimic maximal totally ordered subfields. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 143-161. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a13/

[1] P. Conrad and J. E. Diem: The ring of polar preserving endomorphisms of an Abelian lattice-ordered group. Illinois J. Math. 15 (1971), 222–240. | DOI | MR

[2] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl

[3] R. H. Redfield: Constructing lattice-ordered fields and division rings. Bull. Austral. Math. Soc. 40 (1989), 365–369. | DOI | MR | Zbl

[4] R. H. Redfield: Lattice-ordered fields as convolution algebras. J. Algebra 153 (1992), 319–356. | DOI | MR | Zbl

[5] R. H. Redfield: Lattice-ordered power series fields. J. Austral. Math. Soc. (Series A) 52 (1992), 299–321. | DOI | MR | Zbl

[6] P. Ribenboim: Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312. | DOI | MR | Zbl

[7] N. Schwartz: Lattice-ordered fields. Order 3 (1986), 179–194. | DOI | MR | Zbl

[8] S. A. Steinberg: Personal communication. (1990).

[9] R. R. Wilson: Lattice orderings on the real field. Pacific J. Math. 63 (1976), 571–577. | DOI | MR | Zbl