@article{CMJ_2001_51_1_a13,
author = {Redfield, R. H.},
title = {Subfields of lattice-ordered fields that mimic maximal totally ordered subfields},
journal = {Czechoslovak Mathematical Journal},
pages = {143--161},
year = {2001},
volume = {51},
number = {1},
mrnumber = {1814640},
zbl = {1079.12005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a13/}
}
Redfield, R. H. Subfields of lattice-ordered fields that mimic maximal totally ordered subfields. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 1, pp. 143-161. http://geodesic.mathdoc.fr/item/CMJ_2001_51_1_a13/
[1] P. Conrad and J. E. Diem: The ring of polar preserving endomorphisms of an Abelian lattice-ordered group. Illinois J. Math. 15 (1971), 222–240. | DOI | MR
[2] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl
[3] R. H. Redfield: Constructing lattice-ordered fields and division rings. Bull. Austral. Math. Soc. 40 (1989), 365–369. | DOI | MR | Zbl
[4] R. H. Redfield: Lattice-ordered fields as convolution algebras. J. Algebra 153 (1992), 319–356. | DOI | MR | Zbl
[5] R. H. Redfield: Lattice-ordered power series fields. J. Austral. Math. Soc. (Series A) 52 (1992), 299–321. | DOI | MR | Zbl
[6] P. Ribenboim: Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312. | DOI | MR | Zbl
[7] N. Schwartz: Lattice-ordered fields. Order 3 (1986), 179–194. | DOI | MR | Zbl
[8] S. A. Steinberg: Personal communication. (1990).
[9] R. R. Wilson: Lattice orderings on the real field. Pacific J. Math. 63 (1976), 571–577. | DOI | MR | Zbl