Asymptotic properties of differential equations with advanced argument
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 825-837 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper discusses the asymptotic properties of solutions of the scalar functional differential equation \[ y^{\prime }(x)=ay(\tau (x))+by(x),\qquad x\in [x_0,\infty ) \] of the advanced type. We show that, given a specific asymptotic behaviour, there is a (unique) solution $y(x)$ which behaves in this way.
The paper discusses the asymptotic properties of solutions of the scalar functional differential equation \[ y^{\prime }(x)=ay(\tau (x))+by(x),\qquad x\in [x_0,\infty ) \] of the advanced type. We show that, given a specific asymptotic behaviour, there is a (unique) solution $y(x)$ which behaves in this way.
Classification : 34K15, 34K25, 39B22
Keywords: functional differential equation; functional (nondifferential) equation; advanced argument; asymptotic behaviour
@article{CMJ_2000_50_4_a9,
     author = {\v{C}erm\'ak, Jan},
     title = {Asymptotic properties of differential equations with advanced argument},
     journal = {Czechoslovak Mathematical Journal},
     pages = {825--837},
     year = {2000},
     volume = {50},
     number = {4},
     mrnumber = {1792972},
     zbl = {1079.34544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a9/}
}
TY  - JOUR
AU  - Čermák, Jan
TI  - Asymptotic properties of differential equations with advanced argument
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 825
EP  - 837
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a9/
LA  - en
ID  - CMJ_2000_50_4_a9
ER  - 
%0 Journal Article
%A Čermák, Jan
%T Asymptotic properties of differential equations with advanced argument
%J Czechoslovak Mathematical Journal
%D 2000
%P 825-837
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a9/
%G en
%F CMJ_2000_50_4_a9
Čermák, Jan. Asymptotic properties of differential equations with advanced argument. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 825-837. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a9/

[1] J. Čermák: The asymptotic bounds of linear delay systems. J. Math. Anal. Appl. 225 (1998), 373–388. | DOI | MR

[2] J. Diblík: Asymptotic representation of solutions of equation $\dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))]$. J. Math. Anal. Appl. 217 (1998), 200–215. | DOI | MR

[3] J. K. Hale and S. M. Verduyn Lunel: Functional Differential Equations. Springer-Verlag, New York, 1993.

[4] M. L. Heard: Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=ax(t)+bx(t^{\alpha })$, $\alpha >1$. J. Math. Anal. Appl. 44 (1973), 745–757. | DOI | MR | Zbl

[5] M. L. Heard: A change of variables for functional differential equations. J. Differential Equations 18 (1975), 1–10. | DOI | MR | Zbl

[6] T. Kato and J. B. Mcleod: The functional differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$. Bull. Amer. Math. Soc. 77 (1971), 891–937. | MR

[7] M. Kuczma, B. Choczewski and R. Ger: Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990. | MR

[8] G. S. Ladde, V. Lakshmikantham and B. G. Zhang: Oscillation Theory of Differential Equations with Deviating Argument. Marcel Dekker, Inc., New York, 1987. | MR

[9] F. Neuman: On transformations of differential equations and systems with deviating argument. Czechoslovak Math. J. 31(106) (1981), 87–90. | MR | Zbl

[10] F. Neuman: Transformations and canonical forms of functional-differential equations. Proc. Roy. Soc. Edinburgh 115A (1990), 349–357. | MR

[11] V. A. Staikos and P. Ch. Tsamatos: On the terminal value problem for differential equations with deviating arguments. Arch. Math. (Brno) (1985), 43–49. | MR