Quasilinear elliptic problems with multivalued terms
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 803-823 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the quasilinear elliptic problem with multivalued terms.We consider the Dirichlet problem with a multivalued term appearing in the equation and a problem of Neumann type with a multivalued term appearing in the boundary condition. Our approach is based on Szulkin’s critical point theory for lower semicontinuous energy functionals.
We study the quasilinear elliptic problem with multivalued terms.We consider the Dirichlet problem with a multivalued term appearing in the equation and a problem of Neumann type with a multivalued term appearing in the boundary condition. Our approach is based on Szulkin’s critical point theory for lower semicontinuous energy functionals.
Classification : 35J20, 35J60
Keywords: subdifferential; critical point; Palais-Smale condition; Mountain Pass Theorem; Saddle Point Theorem; multivalued term; Dirichlet problem; Neumann problem; p-Laplacian; Rayleigh quotient
@article{CMJ_2000_50_4_a8,
     author = {Halidias, Nikolaos and Papageorgiou, Nikolaos S.},
     title = {Quasilinear elliptic problems with multivalued terms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {803--823},
     year = {2000},
     volume = {50},
     number = {4},
     mrnumber = {1792971},
     zbl = {1079.35511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a8/}
}
TY  - JOUR
AU  - Halidias, Nikolaos
AU  - Papageorgiou, Nikolaos S.
TI  - Quasilinear elliptic problems with multivalued terms
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 803
EP  - 823
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a8/
LA  - en
ID  - CMJ_2000_50_4_a8
ER  - 
%0 Journal Article
%A Halidias, Nikolaos
%A Papageorgiou, Nikolaos S.
%T Quasilinear elliptic problems with multivalued terms
%J Czechoslovak Mathematical Journal
%D 2000
%P 803-823
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a8/
%G en
%F CMJ_2000_50_4_a8
Halidias, Nikolaos; Papageorgiou, Nikolaos S. Quasilinear elliptic problems with multivalued terms. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 803-823. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a8/

[1] R. Adams: Sobolev Spaces. Academic Press, New York, 1975. | MR | Zbl

[2] W. F. Ames: Nonlinear Partial Differential Equations in Engineering. Academic Press, New York, 1965. | MR | Zbl

[3] A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349–381. | DOI | MR

[4] A. Anane and J. P. Gossez: Strongly nonlinear elliptic problems near resonance: a variational approach. Comm. Partial Differential Equations 15 (1990), 1141–1159. | DOI | MR

[5] D. Arcoya and M. Calahorrano: Some discontinuous problems with a quasilinear operator. J. Math. Anal. Appl. 187 (1994), 1059–1072. | DOI | MR

[6] L. Boccardo, P. Drábek, D. Giachetti and M. Kučera: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. TMA 10 (1986), 1083–1103. | MR

[7] K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | DOI | MR

[8] D. Costa and C. Magalhaes: Existence results for perturbations of the p-Laplacian. Nonlinear Anal. TMA 24 (1995), 409–418. | MR

[9] C. De Coster: Pairs of positive solutions for the one-dimensional p-Laplacian. Nonlinear Anal. TMA 23 (1994), 669–681. | MR | Zbl

[10] M. Del Pino, M. Elgueta and R. Manasevich: A homotopic deformation along p of a Leray-Shauder degree result and existence for $(|u^{\prime }|^{p-2}u^{\prime })^{\prime }+f(t,u) = 0$, $ u(0)=u(T)=0$, $p>1$. J. Differential Equations 80 (1989), 1–13. | DOI | MR

[11] A. Friedman: Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech. 8 (1959), 161–184. | MR | Zbl

[12] Z. Guo: Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. | MR

[13] A. El. Hachimi, J.-P. Gossez: A note on a nonresonance condition for a quasilinear elliptic problem. Nonlinear Anal. TMA 22 (1994), 229–236. | MR

[14] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis Volume I: Theory. Kluwer Academic Publishers, Dordrecht, 1997. | MR

[15] A. Ioffe and V. Tichomirov: Theory of Extremal Problems. North Holland, Amsterdam, 1979. | MR

[16] N. Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems. J. Math. Soc. Japan 27 (1975), 121–149. | DOI | MR | Zbl

[17] A. Kufner, O. John and S. Fučík: Function Spaces. Noordhoff, Leyden, The Netherlands, 1977. | MR

[18] P. Lindqvist: On the equation $\div (|Dx|^{p-2}Dx)+ \lambda |x|^{p-2}x = 0$. Proc. AMS vol. 109, 1991, pp. 157–164. | MR

[19] P. H. Rabinowitz: Some minimax theorems and applications to nonlinear partial differential equations. Nonlinear Analysis: A collection of papers of E. Rothe, L. Cesari, R. Kannan, H. F. Weinberger (eds.), Acad. Press, New York, 1978, pp. 161–177. | MR | Zbl

[20] P. H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, Regional Conference Series in Math, No 65, AMS, Providence, R. J., 1986. | MR | Zbl

[21] R. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Math. Surveys, vol. 49, AMS, Providence, R. I., 1997. | MR | Zbl

[22] A. Szulkin: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincare Anal. Non Linéaire 3 (1986), 77–109. | DOI | MR | Zbl

[23] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer Verlag, New York, 1990. | MR | Zbl