Keywords: subdifferential; critical point; Palais-Smale condition; Mountain Pass Theorem; Saddle Point Theorem; multivalued term; Dirichlet problem; Neumann problem; p-Laplacian; Rayleigh quotient
@article{CMJ_2000_50_4_a8,
author = {Halidias, Nikolaos and Papageorgiou, Nikolaos S.},
title = {Quasilinear elliptic problems with multivalued terms},
journal = {Czechoslovak Mathematical Journal},
pages = {803--823},
year = {2000},
volume = {50},
number = {4},
mrnumber = {1792971},
zbl = {1079.35511},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a8/}
}
Halidias, Nikolaos; Papageorgiou, Nikolaos S. Quasilinear elliptic problems with multivalued terms. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 803-823. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a8/
[1] R. Adams: Sobolev Spaces. Academic Press, New York, 1975. | MR | Zbl
[2] W. F. Ames: Nonlinear Partial Differential Equations in Engineering. Academic Press, New York, 1965. | MR | Zbl
[3] A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349–381. | DOI | MR
[4] A. Anane and J. P. Gossez: Strongly nonlinear elliptic problems near resonance: a variational approach. Comm. Partial Differential Equations 15 (1990), 1141–1159. | DOI | MR
[5] D. Arcoya and M. Calahorrano: Some discontinuous problems with a quasilinear operator. J. Math. Anal. Appl. 187 (1994), 1059–1072. | DOI | MR
[6] L. Boccardo, P. Drábek, D. Giachetti and M. Kučera: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. TMA 10 (1986), 1083–1103. | MR
[7] K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | DOI | MR
[8] D. Costa and C. Magalhaes: Existence results for perturbations of the p-Laplacian. Nonlinear Anal. TMA 24 (1995), 409–418. | MR
[9] C. De Coster: Pairs of positive solutions for the one-dimensional p-Laplacian. Nonlinear Anal. TMA 23 (1994), 669–681. | MR | Zbl
[10] M. Del Pino, M. Elgueta and R. Manasevich: A homotopic deformation along p of a Leray-Shauder degree result and existence for $(|u^{\prime }|^{p-2}u^{\prime })^{\prime }+f(t,u) = 0$, $ u(0)=u(T)=0$, $p>1$. J. Differential Equations 80 (1989), 1–13. | DOI | MR
[11] A. Friedman: Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech. 8 (1959), 161–184. | MR | Zbl
[12] Z. Guo: Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. | MR
[13] A. El. Hachimi, J.-P. Gossez: A note on a nonresonance condition for a quasilinear elliptic problem. Nonlinear Anal. TMA 22 (1994), 229–236. | MR
[14] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis Volume I: Theory. Kluwer Academic Publishers, Dordrecht, 1997. | MR
[15] A. Ioffe and V. Tichomirov: Theory of Extremal Problems. North Holland, Amsterdam, 1979. | MR
[16] N. Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems. J. Math. Soc. Japan 27 (1975), 121–149. | DOI | MR | Zbl
[17] A. Kufner, O. John and S. Fučík: Function Spaces. Noordhoff, Leyden, The Netherlands, 1977. | MR
[18] P. Lindqvist: On the equation $\div (|Dx|^{p-2}Dx)+ \lambda |x|^{p-2}x = 0$. Proc. AMS vol. 109, 1991, pp. 157–164. | MR
[19] P. H. Rabinowitz: Some minimax theorems and applications to nonlinear partial differential equations. Nonlinear Analysis: A collection of papers of E. Rothe, L. Cesari, R. Kannan, H. F. Weinberger (eds.), Acad. Press, New York, 1978, pp. 161–177. | MR | Zbl
[20] P. H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, Regional Conference Series in Math, No 65, AMS, Providence, R. J., 1986. | MR | Zbl
[21] R. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Math. Surveys, vol. 49, AMS, Providence, R. I., 1997. | MR | Zbl
[22] A. Szulkin: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincare Anal. Non Linéaire 3 (1986), 77–109. | DOI | MR | Zbl
[23] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer Verlag, New York, 1990. | MR | Zbl