Keywords: commutators; division rings; factorsubrings; polynomial identities; torsion-free rings
@article{CMJ_2000_50_4_a7,
author = {Khan, Moharram A.},
title = {Commutativity of rings through a {Streb{\textquoteright}s} result},
journal = {Czechoslovak Mathematical Journal},
pages = {791--801},
year = {2000},
volume = {50},
number = {4},
mrnumber = {1792970},
zbl = {1079.16504},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a7/}
}
Khan, Moharram A. Commutativity of rings through a Streb’s result. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 791-801. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a7/
[1] H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings. Rad. Mat. 3 (1987), 255–260. | MR
[2] M. Chacron: A commutativity theorem for rings. Proc. Amer. Math. Soc. 59 (1976), 211–216. | DOI | MR | Zbl
[3] I. N. Herstein: Two remarks on commutativity of rings. Canad. J. Math. 7 (1955), 411–412. | DOI | MR
[4] T. P. Kezlan: A note on commutativity of semiprime PI-rings. Math. Japon. 27 (1982)), 267–268. | MR | Zbl
[5] M. A. Khan: Commutativity of right $s$-unital rings with polynomial constraints. J. Inst. Math. Comput. Sci. 12 (1999), 47–51. | MR | Zbl
[6] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems. Math. J. Okayama Univ. 31 (1989), 101–120. | MR
[7] E. Psomopoulos: Commutativity theorems for rings and groups with constraints on commutators. Internat. J. Math. Math. Sci. 7 (1984), 513–517. | DOI | MR | Zbl
[8] M. O. Searoid and D. MacHale: Two elementary generalisations of Boolean rings. Amer. Math. Monthly, 93 (1986), 121–122. | DOI | MR
[9] W. Streb: Zur Struktur nichtkommutativer Ringe. Math. J. Okayama Univ. 31 (1989), 135–140. | MR | Zbl
[10] H. Tominaga and A. Yaqub: Commutativity theorems for rings with constraints involving a commutative subset. Results Math. 11 (1987), 186–192. | DOI | MR
[11] J. Tong: On the commutativity of a ring with identity. Canad. Math. Bull. 72 (1984), 456–460. | DOI | MR | Zbl