Commutativity of rings through a Streb’s result
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 791-801 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate commutativity of rings with unity satisfying any one of the properties: \[ \begin{aligned} \lbrace 1- g(yx^{m}) \rbrace \ [yx^{m} - x^{r} f (yx^{m}) \ x^s, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\\lbrace 1- g(yx^{m}) \rbrace \ [x^{m} y - x^{r} f (yx^{m}) x^{s}, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\^{t} [x,y^{n}] = g (x) [f (x), y] h (x)\ {\mathrm and} \ \ [x,y^{n}] \ y^{t} = g (x) [f (x), y] h (x) \end{aligned} \] for some $f(X)$ in $X^{2} {\mathbb Z}[X]$ and $g(X)$, $ h(X)$ in ${\mathbb Z} [X]$, where $m \ge 0$, $ r \ge 0$, $ s \ge 0$, $ n > 0$, $ t > 0$ are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements $x$ and $y$ for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently.
In this paper we investigate commutativity of rings with unity satisfying any one of the properties: \[ \begin{aligned} \lbrace 1- g(yx^{m}) \rbrace \ [yx^{m} - x^{r} f (yx^{m}) \ x^s, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\\lbrace 1- g(yx^{m}) \rbrace \ [x^{m} y - x^{r} f (yx^{m}) x^{s}, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\^{t} [x,y^{n}] = g (x) [f (x), y] h (x)\ {\mathrm and} \ \ [x,y^{n}] \ y^{t} = g (x) [f (x), y] h (x) \end{aligned} \] for some $f(X)$ in $X^{2} {\mathbb Z}[X]$ and $g(X)$, $ h(X)$ in ${\mathbb Z} [X]$, where $m \ge 0$, $ r \ge 0$, $ s \ge 0$, $ n > 0$, $ t > 0$ are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements $x$ and $y$ for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently.
Classification : 16R50, 16U70, 16U80
Keywords: commutators; division rings; factorsubrings; polynomial identities; torsion-free rings
@article{CMJ_2000_50_4_a7,
     author = {Khan, Moharram A.},
     title = {Commutativity of rings through a {Streb{\textquoteright}s} result},
     journal = {Czechoslovak Mathematical Journal},
     pages = {791--801},
     year = {2000},
     volume = {50},
     number = {4},
     mrnumber = {1792970},
     zbl = {1079.16504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a7/}
}
TY  - JOUR
AU  - Khan, Moharram A.
TI  - Commutativity of rings through a Streb’s result
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 791
EP  - 801
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a7/
LA  - en
ID  - CMJ_2000_50_4_a7
ER  - 
%0 Journal Article
%A Khan, Moharram A.
%T Commutativity of rings through a Streb’s result
%J Czechoslovak Mathematical Journal
%D 2000
%P 791-801
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a7/
%G en
%F CMJ_2000_50_4_a7
Khan, Moharram A. Commutativity of rings through a Streb’s result. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 791-801. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a7/

[1] H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings. Rad. Mat. 3 (1987), 255–260. | MR

[2] M. Chacron: A commutativity theorem for rings. Proc. Amer. Math. Soc. 59 (1976), 211–216. | DOI | MR | Zbl

[3] I. N. Herstein: Two remarks on commutativity of rings. Canad. J. Math. 7 (1955), 411–412. | DOI | MR

[4] T. P. Kezlan: A note on commutativity of semiprime PI-rings. Math. Japon. 27 (1982)), 267–268. | MR | Zbl

[5] M. A. Khan: Commutativity of right $s$-unital rings with polynomial constraints. J. Inst. Math. Comput. Sci. 12 (1999), 47–51. | MR | Zbl

[6] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems. Math. J. Okayama Univ. 31 (1989), 101–120. | MR

[7] E. Psomopoulos: Commutativity theorems for rings and groups with constraints on commutators. Internat. J. Math. Math. Sci. 7 (1984), 513–517. | DOI | MR | Zbl

[8] M. O. Searoid and D. MacHale: Two elementary generalisations of Boolean rings. Amer. Math. Monthly, 93 (1986), 121–122. | DOI | MR

[9] W. Streb: Zur Struktur nichtkommutativer Ringe. Math. J. Okayama Univ. 31 (1989), 135–140. | MR | Zbl

[10] H. Tominaga and A. Yaqub: Commutativity theorems for rings with constraints involving a commutative subset. Results Math. 11 (1987), 186–192. | DOI | MR

[11] J. Tong: On the commutativity of a ring with identity. Canad. Math. Bull. 72 (1984), 456–460. | DOI | MR | Zbl