On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 699-704
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this note we show that $B$-scrolls over null curves in a 3-dimensional Lorentzian space form $\bar{M}^3_1(c)$ are characterized as the only ruled surfaces with null rulings whose Gauss maps $G$ satisfy the condition $\Delta G=\Lambda G$, $\Lambda \:{X}(\bar{M})\rightarrow {X}(\bar{M})$ being a parallel endomorphism of ${X}(\bar{M})$.
In this note we show that $B$-scrolls over null curves in a 3-dimensional Lorentzian space form $\bar{M}^3_1(c)$ are characterized as the only ruled surfaces with null rulings whose Gauss maps $G$ satisfy the condition $\Delta G=\Lambda G$, $\Lambda \:{X}(\bar{M})\rightarrow {X}(\bar{M})$ being a parallel endomorphism of ${X}(\bar{M})$.
@article{CMJ_2000_50_4_a2,
author = {Ferr\'andez, Angel and Lucas, Pascual},
title = {On the {Gauss} map of {B-scrolls} in $3$-dimensional {Lorentzian} space forms},
journal = {Czechoslovak Mathematical Journal},
pages = {699--704},
year = {2000},
volume = {50},
number = {4},
mrnumber = {1792965},
zbl = {1079.53505},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a2/}
}
TY - JOUR AU - Ferrández, Angel AU - Lucas, Pascual TI - On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms JO - Czechoslovak Mathematical Journal PY - 2000 SP - 699 EP - 704 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a2/ LA - en ID - CMJ_2000_50_4_a2 ER -
Ferrández, Angel; Lucas, Pascual. On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 699-704. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a2/