Keywords: ${\omega }$-covering set; ${\mathcal E}$; hereditarily nonparadoxical set
@article{CMJ_2000_50_4_a13,
author = {Nowik, Andrzej},
title = {Some topological properties of $\omega$-covering sets},
journal = {Czechoslovak Mathematical Journal},
pages = {865--877},
year = {2000},
volume = {50},
number = {4},
mrnumber = {1792976},
zbl = {1079.03547},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a13/}
}
Nowik, Andrzej. Some topological properties of $\omega$-covering sets. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 865-877. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a13/
[BJ] T. Bartoszyński, H. Judah: Borel images of sets of reals. Real Anal. Exchange 20(2) (1994/5), 536–558. | DOI | MR
[C] T. J. Carlson: Strong measure zero and strongly meager sets. Proc. Amer. Math. Soc. 118 (1993), 577–586. | DOI | MR | Zbl
[E] R. Engelking: General Topology, Revised and Completed Edition. Sigma Series in Pure Mathematics, vol. 6. Heldermann Verlag, Berlin, 1989. | MR
[K1] P. Komjáth: Large small sets. Colloq. Math. 56 (1988), 231–233. | DOI | MR
[K2] P. Komjáth: Some remarks on second category sets. Colloq. Math. 66 (1993), 57–62. | DOI | MR
[M] K. Muthuvel: Certain measure zero, first category sets. Real Anal. Exchange 17 (1991–92), 771–774. | MR
[P] M. Penconek: On nonparadoxical sets. Fund. Math. 139 (1991), 177–191. | DOI | MR | Zbl