Linear extensions of orderings
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 853-864 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.
A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.
Classification : 06A06
Keywords: ordered set; linear extension; natural representation; lexicographic sum; dense subset
@article{CMJ_2000_50_4_a12,
     author = {Nov\'ak, V{\'\i}t\v{e}zslav and Novotn\'y, Miroslav},
     title = {Linear extensions of orderings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {853--864},
     year = {2000},
     volume = {50},
     number = {4},
     mrnumber = {1792975},
     zbl = {1079.06500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a12/}
}
TY  - JOUR
AU  - Novák, Vítězslav
AU  - Novotný, Miroslav
TI  - Linear extensions of orderings
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 853
EP  - 864
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a12/
LA  - en
ID  - CMJ_2000_50_4_a12
ER  - 
%0 Journal Article
%A Novák, Vítězslav
%A Novotný, Miroslav
%T Linear extensions of orderings
%J Czechoslovak Mathematical Journal
%D 2000
%P 853-864
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a12/
%G en
%F CMJ_2000_50_4_a12
Novák, Vítězslav; Novotný, Miroslav. Linear extensions of orderings. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 853-864. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a12/

[1] G. Birkhoff: Lattice Theory. Providence, Rhode Island, 1967. | MR | Zbl

[2] M. M. Day: Arithmetic of ordered systems. Trans. Amer. Math. Soc. 58 (1945), 1–43. | DOI | MR | Zbl

[3] T. Fofanova, I. Rival, A. Rutkowski: Dimension two, fixed points nad dismantable ordered sets. Order 13 (1996), 245–253. | MR

[4] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig, 1914.

[5] T. Hiraguchi: On the dimension of partially ordered sets. Sci. Rep. Kanazawa Univ. 1 (1951), 77–94. | MR | Zbl

[6] H. A. Kierstead, E. C. Milner: The dimension of the finite subsets of $K$. Order 13 (1996), 227–231. | MR

[7] D. Kurepa: Partitive sets and ordered chains. Rad Jugosl. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke 6 (302) (1957), 197–235. | MR | Zbl

[8] J. Loś, C. Ryll-Nardzewski: On the application of Tychonoff’s theorem in mathematical proofs. Fund. Math. 38 (1951), 233–237. | DOI | MR

[9] E. Mendelson: Appendix. W. Sierpiński: Cardinal and Ordinal Numbers, Warszawa, 1958.

[10] J. Novák: On partition of an ordered continuum. Fund. Math. 39 (1952), 53–64. | DOI | MR

[11] V. Novák: On the well dimension of ordered sets. Czechoslovak Math. J. 19 (94) (1969), 1–16. | MR

[12] V. Novák: Über Erweiterungen geordneter Mengen. Arch. Math. (Brno) 9 (1973), 141–146. | MR

[13] V. Novák: Some cardinal characteristics of ordered sets. Czechoslovak Math. J. 48 (123) (1998), 135–144. | DOI | MR

[14] M. Novotný: O representaci částečně uspořádaných množin posloupnostmi nul a jedniček (On representation of partially ordered sets by means of sequences of 0’s and 1’s). Čas. pěst. mat. 78 (1953), 61–64.

[15] M. Novotný: Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír. fak. MU Brno 369 (1955), 451–458. | MR

[16] Ordered sets. Proc. NATO Adv. Study Inst. Banff (1981). | Zbl

[17] M. Pouzet, I. Rival: Which ordered sets have a complete linear extension?. Canad. J. Math. 33 (1981), 1245–1254. | DOI | MR

[18] A. Rutkowski: Which countable ordered sets have a dense linear extension?. Math. Slovaca 46 (1996), 445–455. | MR | Zbl

[19] J. Schmidt: Lexikographische Operationen. Z. Math. Logik Grundlagen Math. 1 (1955), 127–170. | DOI | MR | Zbl

[20] J. Schmidt: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer geordneten Menge. Arch. Math. 7 (1956), 241–249. | DOI | MR

[21] V. Sedmak: Dimenzija djelomično uredenih skupova pridruženih poligonima i poliedrima (Dimension of partially ordered sets connected with polygons and polyhedra). Period. Math.-Phys. Astron. 7 (1952), 169–182. | MR

[22] W. Sierpiński: Cardinal and Ordinal Numbers. Warszawa, 1958. | MR

[23] W. Sierpiński: Sur une propriété des ensembles ordonnés. Fund. Math. 36 (1949), 56–67. | DOI

[24] G. Szász: Einführung in die Verbandstheorie. Leipzig, 1962. | MR

[25] E. Szpilrajn: Sur l’extension de l’ordre partiel. Fund. Math. 16 (1930), 386–389. | DOI