Sequential retractivities and regularity on inductive limits
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 847-851 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove the following result: an inductive limit $(E,t) = \text{ind}(E_n,t_n)$ is regular if and only if for each Mackey null sequence $(x_k)$ in $(E,t)$ there exists $n=n(x_k)\in \mathbb N$ such that $(x_k)$ is contained and bounded in $(E_n,t_n)$. From this we obtain a number of equivalent descriptions of regularity.
In this paper we prove the following result: an inductive limit $(E,t) = \text{ind}(E_n,t_n)$ is regular if and only if for each Mackey null sequence $(x_k)$ in $(E,t)$ there exists $n=n(x_k)\in \mathbb N$ such that $(x_k)$ is contained and bounded in $(E_n,t_n)$. From this we obtain a number of equivalent descriptions of regularity.
Classification : 46A13, 46M40
Keywords: inductive limits; regularity; sequential retractivities
@article{CMJ_2000_50_4_a11,
     author = {Jing-Hui, Qiu},
     title = {Sequential retractivities and regularity on inductive limits},
     journal = {Czechoslovak Mathematical Journal},
     pages = {847--851},
     year = {2000},
     volume = {50},
     number = {4},
     mrnumber = {1792974},
     zbl = {1079.46501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a11/}
}
TY  - JOUR
AU  - Jing-Hui, Qiu
TI  - Sequential retractivities and regularity on inductive limits
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 847
EP  - 851
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a11/
LA  - en
ID  - CMJ_2000_50_4_a11
ER  - 
%0 Journal Article
%A Jing-Hui, Qiu
%T Sequential retractivities and regularity on inductive limits
%J Czechoslovak Mathematical Journal
%D 2000
%P 847-851
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a11/
%G en
%F CMJ_2000_50_4_a11
Jing-Hui, Qiu. Sequential retractivities and regularity on inductive limits. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 4, pp. 847-851. http://geodesic.mathdoc.fr/item/CMJ_2000_50_4_a11/

[1] K. D. Bierstedt: An introduction to locally convex inductive limit. In: Functional Analysis and its Applications, Singapore-New Jersey-Hong Kong, 1988, pp. 35–133. | MR

[2] K. Floret: Folgenretraktive Sequenzen lokalkonvexer Räume. J. Reine Angew. Math. 259 (1973), 65–85. | MR | Zbl

[3] Q. Jing-Hui: Retakh’s conditions and regularity properties of (LF)-spaces. Arch. Math. 67 (1996), 302–307. | DOI | MR | Zbl

[4] J. Bonet and P. Perez Carreras: Barrelled locally convex spaces. North-Holland Math. Stud. 131, Amsterdam, 1987. | MR