A representation theorem for probabilistic metric spaces in general
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 551-554
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we present a representation theorem for probabilistic metric spaces in general.
In this paper, we present a representation theorem for probabilistic metric spaces in general.
@article{CMJ_2000_50_3_a8,
author = {Liu, Mingxue},
title = {A representation theorem for probabilistic metric spaces in general},
journal = {Czechoslovak Mathematical Journal},
pages = {551--554},
year = {2000},
volume = {50},
number = {3},
mrnumber = {1777476},
zbl = {1079.54517},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a8/}
}
Liu, Mingxue. A representation theorem for probabilistic metric spaces in general. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 551-554. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a8/
[MSS] K. Menger, B. Schweizer, A. Sklar: On probabilistic metrics and numerical metrics with probability 1. Czechoslovak Math. J. 9(84) (1959), 459–466. | MR
[MN] B. Morrel, J. Nagata: Statistical metric spaces as related to topological spaces. Gen. Topology Appl. 9 (1978), 233–237. | DOI | MR
[Sh] H. Sherwood: On E spaces and their relation to other classes of probabilistic metric spaces. J. London Math. Soc. 44 (1969), 441–448. | DOI | MR | Zbl
[ST] H. Sherwood, M. D. Taylor: Some PM structures on the set of distribution functions. Rev. Roumaine Math. Pures Appl. 10 (1974), 1251–1260. | MR
[St] R.Stevens: Metrically generated probabilistic metric spaces. Fund. Math. 61 (1968), 259–269. | MR | Zbl