Periodic problems and problems with discontinuities for nonlinear parabolic equations
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 467-497 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact $R_{\delta }$-set in $(CT,L^2(Z))$.
In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that their solution set is a compact $R_{\delta }$-set in $(CT,L^2(Z))$.
Classification : 34G25, 35B10, 35D05, 35K20, 35K55, 47J05
Keywords: pseudomonotone operator; $L$-pseudomonotonicity; operator of type $(S)_{+}$; operator of type $L$-$(S)_{+}$; coercive operator; surjective operator; evolution triple; compact embedding; multifunction; upper solution; lower solution; extremal solution; $R_{\delta }$-set
@article{CMJ_2000_50_3_a2,
     author = {Cardinali, Tiziana and Papageorgiou, Nikolaos S.},
     title = {Periodic problems and problems with discontinuities for nonlinear parabolic equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {467--497},
     year = {2000},
     volume = {50},
     number = {3},
     mrnumber = {1777470},
     zbl = {1079.35519},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a2/}
}
TY  - JOUR
AU  - Cardinali, Tiziana
AU  - Papageorgiou, Nikolaos S.
TI  - Periodic problems and problems with discontinuities for nonlinear parabolic equations
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 467
EP  - 497
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a2/
LA  - en
ID  - CMJ_2000_50_3_a2
ER  - 
%0 Journal Article
%A Cardinali, Tiziana
%A Papageorgiou, Nikolaos S.
%T Periodic problems and problems with discontinuities for nonlinear parabolic equations
%J Czechoslovak Mathematical Journal
%D 2000
%P 467-497
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a2/
%G en
%F CMJ_2000_50_3_a2
Cardinali, Tiziana; Papageorgiou, Nikolaos S. Periodic problems and problems with discontinuities for nonlinear parabolic equations. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 467-497. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a2/

[1] J. Appell, P. Zabrejko: Superposition Operators. Cambridge Univ. Press, Cambridge, U.K., 1990. | MR

[2] R. Ash: Real Analysis and Probability. Academic Press, New York, 1972. | MR

[3] E. Avgerinos, N. S. Papageorgiou: Solutions and periodic solutions for nonlinear evolution equations with nonmonotone perturbations. Z. Anal. Anwendungen 17 (1998), 859–875. | DOI | MR

[4] M. Balloti: Aronszajn’s theorem for a parabolic partial differential equation. Nonlinear Anal. 9 (1985), 1183–1187. | DOI | MR

[5] H. Brezis: Operateurs Maximaux Monotones. North Holland, Amsterdam, 1973. | Zbl

[6] T. Cardinali, A. Fiacca, N. S. Papageorgiou: Extremal solutions for nonlinear parabolic problems with discintinuities. Monatsh. Math. 124 (1997), 119–131. | DOI | MR

[7] K.–C. Chang: The obstacle problem and partial differntial equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 33 (1980), 117–146. | DOI | MR

[8] F. H. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York, 1983. | MR | Zbl

[9] F. S. DeBlasi: Characterizations of certain classes of semicontinuous multifunctions by continuous approximations. J. Math. Anal. Appl. 106 (1985), 1–18. | DOI | MR

[10] F. S. DeBlasi, J. Myjak: On the solution set for differential inclusions. Bull. Polish Acad. Sci. 33 (1985), 17–23.

[11] F. S. DeBlasi, J. Myjak: On continuous approximations for multifunctions. Pacific J. Math. 123 (1986), 9–31. | DOI | MR

[12] J. Deuel, P. Hess: Nonlinear parabolic boundary value problems with upper and lower solutions. Israel J. Math. 29 (1978), 92–104. | DOI | MR

[13] J. Diestel, J. Uhl: Vector Measures. Math. Surveys Monogr. 15, AMS XIII, Providence, RI. (1977). | MR

[14] E. Feireisl: A note on uniqueness for parabolic problems with discontinuous nonlinearities. Nonlinear Anal. 16 (1991), 1053–1056. | DOI | MR | Zbl

[15] A. F. Filippov: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht, 1988. | MR

[16] D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 1977. | MR

[17] S. Heikkila, S. Hu: On fixed points of multifunctions in ordered spaces. Appl. Anal. 51 (1993), 115–127. | DOI | MR

[18] S. Heikkila, V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Marcel Dekker Inc., New York, 1994. | MR

[19] N. Hirano: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. Amer. Math. Soc. 120 (1994), 185–192. | DOI | MR | Zbl

[20] S. Hu, N. S. Papageorgiou: On the topological regularity of the solution of differential inclusions with constraints. J. Differential Equations 107 (1994), 280–289. | DOI | MR

[21] D. Hyman: On decreasing sequences of compact absolute retracts. Fund. Math. 64 (1969), 91–97. | DOI | MR | Zbl

[22] N. Kikuchi: Kneser’s property for $\frac{\partial u}{\partial t}=\Delta u+\sqrt{u}$. Keio Math. Seminar Reports 3 (1978), 45–48. | MR

[23] E. Klein, A. Thompson: Theory of Correspondences. Wiley, New York, 1984. | MR

[24] A. Kufner, O. John, S. Fučík: Function Spaces. Noordhoff International Publishing, Leyden, The Netherlands, 1977. | MR

[25] K. Kuratowski: Topology II. Academic Press, New York, 1968.

[26] J.–M. Lasry, R. Robert: Degre topologique pour certaines couples de fonctions et applications aux equations differentielles multivoques. C. R. Acad. Sci., Paris, Ser. A 283 (1976), 163–166. | MR

[27] J.–L. Lions: Quelques Methodes de Resolutions des Problemes aux Limites Non-Lineaires. Dunod, Paris, 1969. | MR

[28] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions. Internat. J. Math. Math. Sci. 10 (1987), 433–442. | DOI | MR | Zbl

[29] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations. Math. Japon. 32 (1987), 437–464. | MR | Zbl

[30] N. S. Papageorgiou: On Fatou’s lemma and parametric integrals for set–valued functions. J. Math. Anal. Appl. 187 (1994), 809–825. | DOI | MR | Zbl

[31] N. S. Papageorgiou: On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities. J. Math. Anal. Appl 205 (1997), 434–453. | DOI | MR | Zbl

[32] N. S. Papageorgiou, N. Shahzad: Existence and strong relaxation theorems for nonlinear evolution inclusions. Yokohama Math. J. 43 (1995), 73–88. | MR

[33] J.–P. Puel: Existence, comportement à l’infini et stabilité dans certains problèmes quasilinéaires elliptiques et paraboliques d’ordre 2. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), 89–119. | MR | Zbl

[34] J. Rauch: Discontinuous semilinear differential equations and multiple-valued maps. Proc. Amer. Math. Soc. 64 (1977), 277–282. | DOI | MR | Zbl

[35] D. H. Sattinger: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21 (1972), 979–1000. | DOI | MR | Zbl

[36] B.–A. Ton: Nonlinear evolution equations in Banach spaces. J. Differential Equations 9 (1971), 608–618. | DOI | MR | Zbl

[37] I. Vrabie: Periodic solutions for nonlinear evolution equations in a Banach space. Proc. Amer. Math. Soc. 109 (1990), 653–661. | DOI | MR | Zbl

[38] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer-Verlag, New York, 1990. | MR | Zbl