Methods of oscillation theory of half-linear second order differential equations
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 657-671 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate oscillatory properties of the second order half-linear equation \[ (r(t)\Phi (y^{\prime }))^{\prime }+c(t)\Phi (y)=0, \quad \Phi (s):= |s|^{p-2}s. \qquad \mathrm{{(*)}}\] Using the Riccati technique, the variational method and the reciprocity principle we establish new oscillation and nonoscillation criteria for (*). We also offer alternative methods of proofs of some recent oscillation results.
In this paper we investigate oscillatory properties of the second order half-linear equation \[ (r(t)\Phi (y^{\prime }))^{\prime }+c(t)\Phi (y)=0, \quad \Phi (s):= |s|^{p-2}s. \qquad \mathrm{{(*)}}\] Using the Riccati technique, the variational method and the reciprocity principle we establish new oscillation and nonoscillation criteria for (*). We also offer alternative methods of proofs of some recent oscillation results.
Classification : 34C10
Keywords: half-linear equation; Riccati technique; variational principle; reciprocity principle; principal solution; oscillation and nonoscillation criteria
@article{CMJ_2000_50_3_a17,
     author = {Do\v{s}l\'y, Ond\v{r}ej},
     title = {Methods of oscillation theory of half-linear second order differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {657--671},
     year = {2000},
     volume = {50},
     number = {3},
     mrnumber = {1777486},
     zbl = {1079.34512},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a17/}
}
TY  - JOUR
AU  - Došlý, Ondřej
TI  - Methods of oscillation theory of half-linear second order differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 657
EP  - 671
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a17/
LA  - en
ID  - CMJ_2000_50_3_a17
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%T Methods of oscillation theory of half-linear second order differential equations
%J Czechoslovak Mathematical Journal
%D 2000
%P 657-671
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a17/
%G en
%F CMJ_2000_50_3_a17
Došlý, Ondřej. Methods of oscillation theory of half-linear second order differential equations. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 657-671. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a17/

[1] C. D. Ahlbrandt: Equivalent boundary value problems for self-adjoint differential systems. J. Differential Equations 9 (1971), 420–435. | DOI | MR | Zbl

[2] C. D. Ahlbrandt: Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals. Rocky Mountain J. Math. 2 (1972), 169–189. | DOI | MR

[3] M. Del Pino, M. Elquenta, R. Manachevich: Generalizing Hartman’s oscillation result for $(|x^{\prime }|^{p-2}x^{\prime })^{\prime }+c(t)|x|^{p-2}x=0$, $p>1$. Houston J. Math. 17 (1991), 63–70. | MR

[4] O. Došlý: Oscillation criteria for half-linear second order differential equations. Hiroshima J. Math. 28 (1998), 507–521. | DOI | MR

[5] O. Došlý: A remark on conjugacy of half-linear second order differential equations. Math. Slovaca 2000 (to appear). | MR

[6] O. Došlý: Principal solutions and transformations of linear Hamiltonian systems. Arch. Math. 28 (1992), 113–120. | MR

[7] O. Došlý, A. Lomtatidze: Oscillation and nonoscillation criteria for half-linear second order differential equations. (to appear). | MR

[8] Á. Elbert: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.

[9] Á. Elbert: Oscillation and nonoscillation theorems for some non-linear ordinary differential equations. Lecture Notes in Math. 964 (1982), 187–212. | DOI

[10] Á. Elbert: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464. | MR | Zbl

[11] Á. Elbert, T. Kusano: Principal solutions of nonoscillatory half-linear differential equations. Adv. Math. Sci. Appl. 18 (1998), 745–759.

[12] E. Hille: Nonoscillation theorems. Trans. Amer. Math. Soc. 64 (1948), 234–252. | DOI | MR

[13] J. Jaroš, T. Kusano: A Picone type identity for half-linear differential equations. Acta Math. Univ. Comen. 68 (1999), 137–151. | MR

[14] T. Kusano, Y. Naito: Oscillation and nonoscillation criteria for second order quasilinear differential equations. Acta Math. Hungar. 76 (1997), 81–99. | DOI | MR

[15] T. Kusano, Y. Naito, A. Ogata: Strong oscillation and nonoscillation of quasilinear differential equations of second order. Differential Equations Dynam. Systems 2 (1994), 1–10. | MR

[16] H. J. Li: Oscillation criteria for half-linear second order differential equations. Hiroshima Math. J. 25 (1995), 571–583. | DOI | MR | Zbl

[17] H. J. Li, C. C. Yeh: Sturmian comparison theorem for half-linear second order differential equations. Proc. Roy. Soc. Edinburgh 125A (1996), 1193–1204. | MR

[18] A. Lomtatidze: Oscillation and nonoscillation of Emden-Fowler type equation of second order. Arch. Math. 32 (1996), 181–193. | MR

[19] R. Mařík: Nonnegativity of functionals corresponding to the second order half-linear differential equation, submitted.

[20] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. | DOI | MR | Zbl

[21] J. D. Mirzov: Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. | MR

[22] A. Wintner: On the non-existence of conjugate points. Amer. J. Math. 73 (1951), 368–380. | DOI | MR