On nonoscillation of canonical or noncanonical disconjugate functional equations
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 627-639 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Qualitative comparison of the nonoscillatory behavior of the equations \[ L_ny(t) + H(t,y(t)) = 0 \] and \[ L_ny(t) + H(t,y(g(t))) = 0 \] is sought by way of finding different nonoscillation criteria for the above equations. $L_n$ is a disconjugate operator of the form \[ L_n = \frac{1}{p_n(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{1}{p_{n-1}(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \ldots \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{\cdot }{p_0(t)}. \] Both canonical and noncanonical forms of $L_n$ have been studied.
Qualitative comparison of the nonoscillatory behavior of the equations \[ L_ny(t) + H(t,y(t)) = 0 \] and \[ L_ny(t) + H(t,y(g(t))) = 0 \] is sought by way of finding different nonoscillation criteria for the above equations. $L_n$ is a disconjugate operator of the form \[ L_n = \frac{1}{p_n(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{1}{p_{n-1}(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \ldots \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{\cdot }{p_0(t)}. \] Both canonical and noncanonical forms of $L_n$ have been studied.
Classification : 34K11, 34K15, 34K25, 35J30, 35R10
Keywords: canonical; noncanonical; oscillatory; nonoscillatory; principal system
@article{CMJ_2000_50_3_a14,
     author = {Singh, Bhagat},
     title = {On nonoscillation of canonical or noncanonical disconjugate functional equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {627--639},
     year = {2000},
     volume = {50},
     number = {3},
     mrnumber = {1777483},
     zbl = {1079.34545},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a14/}
}
TY  - JOUR
AU  - Singh, Bhagat
TI  - On nonoscillation of canonical or noncanonical disconjugate functional equations
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 627
EP  - 639
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a14/
LA  - en
ID  - CMJ_2000_50_3_a14
ER  - 
%0 Journal Article
%A Singh, Bhagat
%T On nonoscillation of canonical or noncanonical disconjugate functional equations
%J Czechoslovak Mathematical Journal
%D 2000
%P 627-639
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a14/
%G en
%F CMJ_2000_50_3_a14
Singh, Bhagat. On nonoscillation of canonical or noncanonical disconjugate functional equations. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 627-639. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a14/

[1] R. S. Dahiya, B. Singh: A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation. J. Math. Phys. Sci. 7 (1973), 163–170. | MR

[2] J. Dzurina, J. Ohriska: Asymptotic and oscillatory properties of differential equations with deviating argument. Hiroshima Math. J. 22 (1992), 561–571. | DOI | MR

[3] H. Onose: Oscillatory properties of ordinary differential equations of arbitrary order. J. Differential Equations 7 (1970), 454–458. | DOI | MR

[4] Ch. G. Philos: Oscillatory and asymptotic behavior of differential equations with deviating arguments. Proc. Roy. Soc. Edinburgh 81 (1978), 195–210. | MR

[5] Ch. G. Philos, V. A. Staikos: Asymptotic properties of nonoscillatory solutions of differential equations with deviating arguments. Pacific J. Math. 70 (1977), 221–242. | DOI | MR

[6] Y. G. Sficos, I. P. Stavroulakis: On the oscillatory and asymptotic behavior of a class of differential equations with deviating arguments. SIAM J. Math. Anal. 9 (1978), 956–966. | DOI | MR

[7] B. Singh, T. Kusano: Asymptotic behavior of oscillatory solutions of a differential equation with deviating arguments. J. Math. Anal. Appl. 83 (1981), 395–407. | DOI | MR

[8] B. Singh: Forced nonoscillations in second order functional equations. Hiroshima Math. J. 7 (1977), 657–665. | DOI | MR | Zbl

[9] B. Singh: A Correction to “Forced oscillations in general ordinary differential equations with deviating arguments”. Hiroshima Math. J. 9 (1979), 297–302. | DOI | MR | Zbl

[10] B. Singh: On the Oscillation of an elliptic equation of fourth order. Tamkang J. Math. 27 (1996), 151–159. | MR | Zbl

[11] B. Singh: Asymptotically vanishing oscillatory trajectories in second order retarded equations. SIAM J. Math. Anal. 7 (1976), 37–44. | DOI | MR | Zbl

[12] B. Singh: Slowly oscillating and nonoscillating trajectories in second order retarded sublinear equations. Math. Japon. 24 (1980), 617–623. | MR | Zbl

[13] V. A. Staikos, Ch. G. Philos: Nonoscillatory phenomena and damped oscillations. Nonlinear Anal. 2 (1978), 197–210. | DOI | MR

[14] C. C. Travis: Oscillation theorems for second order differential equations with functional arguments. Proc. Amer. Math. Soc. 30 (1972), 199–201. | MR | Zbl

[15] W. F. Trench: Canonical forms and principal systems in general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319–327. | DOI | MR