Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 603-614 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide local convergence theorems for Newton’s method in Banach space using outer or generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our convergence balls differ from earlier ones. In fact we show that with a simple numerical example that our convergence ball contains earlier ones. This way we have a wider choice of initial guesses than before. Our results can be used to solve undetermined systems, nonlinear least squares problems and ill-posed nonlinear operator equations.
We provide local convergence theorems for Newton’s method in Banach space using outer or generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our convergence balls differ from earlier ones. In fact we show that with a simple numerical example that our convergence ball contains earlier ones. This way we have a wider choice of initial guesses than before. Our results can be used to solve undetermined systems, nonlinear least squares problems and ill-posed nonlinear operator equations.
Classification : 47H17, 47J25, 49D15, 65J15
Keywords: Newton’s method; Banach space; Fréchet-derivative; local convergence; outer inverse; generalized inverse
@article{CMJ_2000_50_3_a12,
     author = {Argyros, Ioannis K.},
     title = {Local convergence theorems of {Newton{\textquoteright}s} method for nonlinear equations using outer or generalized inverses},
     journal = {Czechoslovak Mathematical Journal},
     pages = {603--614},
     year = {2000},
     volume = {50},
     number = {3},
     mrnumber = {1777480},
     zbl = {1079.65528},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a12/}
}
TY  - JOUR
AU  - Argyros, Ioannis K.
TI  - Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 603
EP  - 614
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a12/
LA  - en
ID  - CMJ_2000_50_3_a12
ER  - 
%0 Journal Article
%A Argyros, Ioannis K.
%T Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses
%J Czechoslovak Mathematical Journal
%D 2000
%P 603-614
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a12/
%G en
%F CMJ_2000_50_3_a12
Argyros, Ioannis K. Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 603-614. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a12/

[1] M. Anitescu, D. I. Coroian, M. Z. Nashed, F. A. Potra: Outer inverses and multi-body system simulation. Numer. Funct. Anal. Optim. 17 (7 and 8) (1996), 661–678. | DOI | MR

[2] I. K. Argyros: On the solution of undetermined systems of nonlinear equations in Euclidean spaces. Pure Math. Appl. 4, 3 (1993), 199–209. | MR | Zbl

[3] I. K. Argyros: On the discretization of Newton-like methods. Int. J. Comput. Math. 52 (1994), 161–170. | DOI

[4] I. K. Argyros: Comparing the radii of some balls appearing in connection to three local convergence theorems for Newton’s method. Southwest J. Pure Appl. Math. 1 (1998). | MR | Zbl

[5] I. K. Argyros: Semilocal convergence theorems for a certain class of iterative procedures using outer or generalized inverses and hypotheses on the second Fréchet-derivative. Korean J. Comput. Appl. Math. 6 (1999). | MR

[6] I. K. Argyros, F. Szidarovszky: The Theory and Application of Iteration Methods. CRC Press, Inc., Boca Raton, Florida, U.S.A., 1993. | MR

[7] A. Ben-Israel: A Newton-Raphson method for the solution of equations. J. Math. Anal. Appl. 15 (1966), 243–253. | DOI | MR

[8] A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications. John Wiley and Sons, New York, 1974. | MR

[9] X. Chen, M. Z. Nashed: Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 66 (1993), 235–257. | DOI | MR

[10] X. Chen, M. Z. Nashed, L. Qi: Convergence of Newton’s method for singular and nonsmooth equations using outer inverses. SIAM J. Optim. 7 (1997), 445–462. | DOI | MR

[11] P. Deuflhard, G. Heindl: Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 16 (1979), 1–10. | DOI | MR

[12] W. M. Häubler: A Kantorovich-type convergence analysis for the Gauss-Newton method. Numer. Math. 48 (1986), 119–125. | DOI | MR

[13] L. V. Kantorovich, G. P. Akilov: Functional Analysis. Pergamon Press, Oxford, 1982. | MR

[14] M. Z. Nashed: Inner, outer and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim. 9 (1987), 261–325. | DOI | MR | Zbl