Keywords: Newton’s method; Banach space; Fréchet-derivative; local convergence; outer inverse; generalized inverse
@article{CMJ_2000_50_3_a12,
author = {Argyros, Ioannis K.},
title = {Local convergence theorems of {Newton{\textquoteright}s} method for nonlinear equations using outer or generalized inverses},
journal = {Czechoslovak Mathematical Journal},
pages = {603--614},
year = {2000},
volume = {50},
number = {3},
mrnumber = {1777480},
zbl = {1079.65528},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a12/}
}
TY - JOUR AU - Argyros, Ioannis K. TI - Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses JO - Czechoslovak Mathematical Journal PY - 2000 SP - 603 EP - 614 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a12/ LA - en ID - CMJ_2000_50_3_a12 ER -
Argyros, Ioannis K. Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 603-614. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a12/
[1] M. Anitescu, D. I. Coroian, M. Z. Nashed, F. A. Potra: Outer inverses and multi-body system simulation. Numer. Funct. Anal. Optim. 17 (7 and 8) (1996), 661–678. | DOI | MR
[2] I. K. Argyros: On the solution of undetermined systems of nonlinear equations in Euclidean spaces. Pure Math. Appl. 4, 3 (1993), 199–209. | MR | Zbl
[3] I. K. Argyros: On the discretization of Newton-like methods. Int. J. Comput. Math. 52 (1994), 161–170. | DOI
[4] I. K. Argyros: Comparing the radii of some balls appearing in connection to three local convergence theorems for Newton’s method. Southwest J. Pure Appl. Math. 1 (1998). | MR | Zbl
[5] I. K. Argyros: Semilocal convergence theorems for a certain class of iterative procedures using outer or generalized inverses and hypotheses on the second Fréchet-derivative. Korean J. Comput. Appl. Math. 6 (1999). | MR
[6] I. K. Argyros, F. Szidarovszky: The Theory and Application of Iteration Methods. CRC Press, Inc., Boca Raton, Florida, U.S.A., 1993. | MR
[7] A. Ben-Israel: A Newton-Raphson method for the solution of equations. J. Math. Anal. Appl. 15 (1966), 243–253. | DOI | MR
[8] A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications. John Wiley and Sons, New York, 1974. | MR
[9] X. Chen, M. Z. Nashed: Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 66 (1993), 235–257. | DOI | MR
[10] X. Chen, M. Z. Nashed, L. Qi: Convergence of Newton’s method for singular and nonsmooth equations using outer inverses. SIAM J. Optim. 7 (1997), 445–462. | DOI | MR
[11] P. Deuflhard, G. Heindl: Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 16 (1979), 1–10. | DOI | MR
[12] W. M. Häubler: A Kantorovich-type convergence analysis for the Gauss-Newton method. Numer. Math. 48 (1986), 119–125. | DOI | MR
[13] L. V. Kantorovich, G. P. Akilov: Functional Analysis. Pergamon Press, Oxford, 1982. | MR
[14] M. Z. Nashed: Inner, outer and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim. 9 (1987), 261–325. | DOI | MR | Zbl