On cut completions of abelian lattice ordered groups
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 587-602 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We denote by $F_a$ the class of all abelian lattice ordered groups $H$ such that each disjoint subset of $H$ is finite. In this paper we prove that if $G \in F_a$, then the cut completion of $G$ coincides with the Dedekind completion of $G$.
We denote by $F_a$ the class of all abelian lattice ordered groups $H$ such that each disjoint subset of $H$ is finite. In this paper we prove that if $G \in F_a$, then the cut completion of $G$ coincides with the Dedekind completion of $G$.
Classification : 06F15, 06F20
Keywords: abelian lattice ordered group; disjoint subset; cut completion; Dedekind completion
@article{CMJ_2000_50_3_a11,
     author = {Jakub{\'\i}k, J\'an},
     title = {On cut completions of abelian lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {587--602},
     year = {2000},
     volume = {50},
     number = {3},
     mrnumber = {1777479},
     zbl = {1079.06507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a11/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On cut completions of abelian lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 587
EP  - 602
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a11/
LA  - en
ID  - CMJ_2000_50_3_a11
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On cut completions of abelian lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2000
%P 587-602
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a11/
%G en
%F CMJ_2000_50_3_a11
Jakubík, Ján. On cut completions of abelian lattice ordered groups. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 587-602. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a11/

[1] R. N. Ball: The structure of the $\alpha $-completion of a lattice ordered group. Houston J. Math. 15 (1989), 481–515. | MR | Zbl

[2] R. N. Ball: Completions of $\ell $-groups. In: Lattice Ordered Groups, A. M. W. Glass and W. C. Holland (eds.), Kluwer, Dordrecht-Boston-London, 1989, pp. 142–177. | MR

[3] R. N. Ball: Distinguished extensions of a lattice ordered group. Algebra Universalis 35 (1996), 85–112. | DOI | MR | Zbl

[4] P. Conrad: The structure of lattice-ordered groups with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171–180. | DOI | MR

[5] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[6] J. Jakubík: Generalized Dedekind completion of a lattice ordered group. Czechoslovak Math. J. 28 (1978), 294–311. | MR