Keywords: abelian lattice ordered group; disjoint subset; cut completion; Dedekind completion
@article{CMJ_2000_50_3_a11,
author = {Jakub{\'\i}k, J\'an},
title = {On cut completions of abelian lattice ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {587--602},
year = {2000},
volume = {50},
number = {3},
mrnumber = {1777479},
zbl = {1079.06507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a11/}
}
Jakubík, Ján. On cut completions of abelian lattice ordered groups. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 587-602. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a11/
[1] R. N. Ball: The structure of the $\alpha $-completion of a lattice ordered group. Houston J. Math. 15 (1989), 481–515. | MR | Zbl
[2] R. N. Ball: Completions of $\ell $-groups. In: Lattice Ordered Groups, A. M. W. Glass and W. C. Holland (eds.), Kluwer, Dordrecht-Boston-London, 1989, pp. 142–177. | MR
[3] R. N. Ball: Distinguished extensions of a lattice ordered group. Algebra Universalis 35 (1996), 85–112. | DOI | MR | Zbl
[4] P. Conrad: The structure of lattice-ordered groups with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171–180. | DOI | MR
[5] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[6] J. Jakubík: Generalized Dedekind completion of a lattice ordered group. Czechoslovak Math. J. 28 (1978), 294–311. | MR