Keywords: quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method
@article{CMJ_2000_50_3_a10,
author = {Park, Jong Yeoul and Bae, Jeong Ja},
title = {On solutions of quasilinear wave equations with nonlinear damping terms},
journal = {Czechoslovak Mathematical Journal},
pages = {565--585},
year = {2000},
volume = {50},
number = {3},
mrnumber = {1777478},
zbl = {1079.35533},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a10/}
}
TY - JOUR AU - Park, Jong Yeoul AU - Bae, Jeong Ja TI - On solutions of quasilinear wave equations with nonlinear damping terms JO - Czechoslovak Mathematical Journal PY - 2000 SP - 565 EP - 585 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a10/ LA - en ID - CMJ_2000_50_3_a10 ER -
Park, Jong Yeoul; Bae, Jeong Ja. On solutions of quasilinear wave equations with nonlinear damping terms. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 565-585. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a10/
[1] E. H. Brito: Nonlinear Initial Boundary Value Problems. Nonlinear Anal. 11 (1987), 125–137. | DOI | MR | Zbl
[2] C. Corduneanu: Principles of Differential and Integral Equations. Chelsea Publishing Company, The Bronx, New York, 1977. | MR
[3] R. Ikehata: On the Existence of Global Solutions for some Nonlinear Hyperbolic Equations with Neumann Conditions. T R U Math. 24 (1988), 1–17. | MR | Zbl
[4] T. Matsuyama, R. Ikehata: On Global Solutions and Energy Decay for the Wave Equations of Kirchhoff type with Nonlinear Damping terms. J. Math. Anal. Appl. 204 (1996), 729–753. | DOI | MR
[5] M. Nakao: Asymptotic Stability of the Bounded or Almost Periodic Solutions of the Wave Equations with Nonlinear Damping terms. J. Math. Anal. Appl. 58 (1977), 336–343. | DOI | MR
[6] K. Narasimha: Nonlinear Vibration of an Elastic String. J. Sound Vibration 8 (1968), 134–146. | DOI
[7] K. Nishihara, Y. Yamada: On Global Solutions of some Degenerate Quasilinear Hyperbolic Equation with Dissipative Damping terms. Funkcial. Ekvac. 33 (1990), 151–159. | MR
[8] K. Ono: Global Existence, Decay and Blowup of Solutions for some Mildly Degenerate Nonlinear Kirchhoff Strings. J. Differential Equations 137 (1997), 273–301. | DOI | MR | Zbl
[9] M. D. Silva Alves: Variational Inequality for a Nonlinear Model of the Oscillations of Beams. Nonlinear Anal. 28 (1997), 1101–1108. | MR | Zbl