Barrelledness of generalized sums of normed spaces
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 459-465
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $(E_{i})_{i\in I}$ be a family of normed spaces and $\lambda $ a space of scalar generalized sequences. The $\lambda $-sum of the family $(E_{i})_{i\in I}$ of spaces is \[ \lambda \lbrace (E_{i})_{i\in I}\rbrace :=\lbrace (x_{i})_{i\in I},x_{i}\in E_{i}, \quad \text{and}\quad (\Vert x_{i}\Vert )_{i\in I}\in \lambda \rbrace . \] Starting from the topology on $\lambda $ and the norm topology on each $E_i,$ a natural topology on $\lambda \lbrace (E_i)_{i\in I}\rbrace $ can be defined. We give conditions for $\lambda \lbrace (E_i)_{i\in I}\rbrace $ to be quasi-barrelled, barrelled or locally complete.
Let $(E_{i})_{i\in I}$ be a family of normed spaces and $\lambda $ a space of scalar generalized sequences. The $\lambda $-sum of the family $(E_{i})_{i\in I}$ of spaces is \[ \lambda \lbrace (E_{i})_{i\in I}\rbrace :=\lbrace (x_{i})_{i\in I},x_{i}\in E_{i}, \quad \text{and}\quad (\Vert x_{i}\Vert )_{i\in I}\in \lambda \rbrace . \] Starting from the topology on $\lambda $ and the norm topology on each $E_i,$ a natural topology on $\lambda \lbrace (E_i)_{i\in I}\rbrace $ can be defined. We give conditions for $\lambda \lbrace (E_i)_{i\in I}\rbrace $ to be quasi-barrelled, barrelled or locally complete.
Classification :
46A08, 46A45, 46E10, 46E40
Keywords: barrelled spaces; generalized sequences
Keywords: barrelled spaces; generalized sequences
@article{CMJ_2000_50_3_a1,
author = {Fern\'andez, A. and Florencio, M. and Oliveros, J.},
title = {Barrelledness of generalized sums of normed spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {459--465},
year = {2000},
volume = {50},
number = {3},
mrnumber = {1777469},
zbl = {1079.46500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a1/}
}
Fernández, A.; Florencio, M.; Oliveros, J. Barrelledness of generalized sums of normed spaces. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 459-465. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a1/