Keywords: convex metric space; nonexpansive type mapping; fixed point
@article{CMJ_2000_50_3_a0,
author = {\'Ciri\'c, Ljubomir},
title = {On a generalization of a {Gregu\v{s}} fixed point theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {449--458},
year = {2000},
volume = {50},
number = {3},
mrnumber = {1777468},
zbl = {1079.47509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a0/}
}
Ćirić, Ljubomir. On a generalization of a Greguš fixed point theorem. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 3, pp. 449-458. http://geodesic.mathdoc.fr/item/CMJ_2000_50_3_a0/
[LJC93] LJ. B. Ćirić: On some discontinuous fixed point mappings in convex metric spaces. Czechoslovak Math. J. 43(118) (1993), 319–326. | MR
[LJC74] LJ. B. Ćirić: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273. | DOI
[LJC91] LJ. B. Ćirić: On a common fixed point theorem of a Greguš type. Publ. Inst. Math (Beograd) (49)63 (1991), 174–178. | MR
[MD87] M. L. Diviccaro, B. Fisher, S. Sessa: A common fixed point theorem of Greguš type. Publ. Math. Debrecen 34 (1987), 83–89. | MR
[BF82] B. Fisher: Common fixed points on a Banach space. Chung Yuan J. 11 (1982), 19–26.
[BF86] B. Fisher, S. Sessa: On a fixed point theorem of Greguš. Internat. J. Math. Math. Sci. 9 (1986), no. 1, 23–28. | DOI | MR
[MG80] M. Greguš: A fixed point theorem in Banach space. Boll. Un. Mat. Ital. A 5 (1980), 193–198. | MR
[BL89] B. Y. Li: Fixed point theorems of nonexpansive mappings in convex metric spaces. Appl. Math. Mech. (English Ed.) 10 (1989), 183–188. | DOI
[RM88] R. N. Mukherjea, V. Verma: A note on a fixed point theorem of Greguš. Math. Japon. 33 (1988), 745–749. | MR
[WT70] W. Takahashi: A convexity in metric space and nonexpansive mappings I. Kodai Math. Sem. Rep. 22 (1970), 142–149. | DOI | MR | Zbl