Keywords: uniform distribution; Baire category; Lebesgue measure; dyadic number of set; continued fraction
@article{CMJ_2000_50_2_a7,
author = {\v{S}al\'at, Tibor},
title = {On uniform distribution of sequences $(a_n x)_1^\infty$},
journal = {Czechoslovak Mathematical Journal},
pages = {331--340},
year = {2000},
volume = {50},
number = {2},
mrnumber = {1761390},
zbl = {1053.11064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a7/}
}
Šalát, Tibor. On uniform distribution of sequences $(a_n x)_1^\infty$. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 331-340. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a7/
[1] D. Carlson: Good sequences of integers. J. Number Theory 7 (1975), 91–104. | DOI | MR | Zbl
[2] H. Davenport, P. Erdös, W. J. Le Veque: On Weyl’s criterion for uniform distribution. Michigan Math. J. 10 (1963), 311–314. | DOI | MR
[3] A. Khintchine: Continued Fractions. Gos. Izd. Mat. Lit., Moscow, 1961. (russian)
[4] L. Kuipers, H. Niederreiter: Uniform Distribution of Sequences. John Wiley, New York-London-Sydney-Toronto, 1974. | MR
[5] H. H. Ostmann: Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. | MR | Zbl
[6] G. M. Petersen, M. T. Mc. Gregor: On the structure of well distributed sequences (II.). Indag. Math. XVI (1964), 477–487. | DOI | MR
[7] T. Šalát: Eine metrische Eigenschaft der Cantorschen Entwicklungen der reellen Zahlen und Irrationalitätskriterien. Czechoslovak Math. J. 14 (89) (1964), 254–266. | MR
[8] R. Sikorski: Real Functions I. (Polish). PWN, Warszawa, 1958. | MR
[9] A. Simmons: An “Archimedean” paradox. Amer. Math. Monthly 89 (1982), 114–115. | DOI | MR
[10] C. Visser: The law of nought-or-one. Studia Math. 7 (1938), 143–159. | DOI | Zbl