Keywords: domination number; independence domination number; $f$-domination number; connected $f$-domination number; total $f$-domination number
@article{CMJ_2000_50_2_a6,
author = {Zhou, Sanming},
title = {Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers},
journal = {Czechoslovak Mathematical Journal},
pages = {321--330},
year = {2000},
volume = {50},
number = {2},
mrnumber = {1761389},
zbl = {1045.05073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a6/}
}
TY - JOUR AU - Zhou, Sanming TI - Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers JO - Czechoslovak Mathematical Journal PY - 2000 SP - 321 EP - 330 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a6/ LA - en ID - CMJ_2000_50_2_a6 ER -
Zhou, Sanming. Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 321-330. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a6/
[Allan-Laskar] R. B. Allan and R. Laskar: On domination and independent domination numbers of a graph. Discrete Math. 23 (1978), 73–76. | DOI | MR
[Bollobas-Cockayne] B. Bollobás and E. J. Cockayne: Graph-theoretic parameters concerning domination, independence and irredundance. J. Graph Theory 3 (1979), 241–249. | DOI | MR
[Cockayne-Dawes-Hedetniemi] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi: Total domination in graphs. Networks 10 (1980), 211–219. | DOI | MR
[Fink-Jacobson-1] J. F. Fink and M. S. Jacobson: $n$-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley & Sons, New York, 1985, pp. 283–300. | MR
[Fink-Jacobson-2] J. F. Fink and M. S. Jacobson: On $n$-domination, $n$-dependence and forbidden subgraphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley & Sons, New York, 1985, pp. 301–311. | MR
[Graver-Watkins] J. E. Graver and M. E. Watkins: Combinatorics with Emphasis on the Theory of Graphs. Springer-Verlag, New York, 1977. | MR
[Hedetniemi-Hedetniemi-Laskar] S. Hedetniemi, S. Hedetniemi and R. Laskar: Domination in trees: models and algorithms. Graph Theory with Applications to Algorithms and Computer Science. John Wiley & Sons, New York, 1985, pp. 423–442. | MR
[Stracke-Volkmann] C. Stracke and L. Volkmann: A new domination conception. J. Graph Theory 17 (1993), 315–323. | MR
[Weinstein] J. M. Weinstein: On the number of disjoint edges in a graph. Canad. J. Math. 15 (1963), 106–111. | DOI | MR | Zbl
[Zhou] S. M. Zhou: On $f$-domination number of a graph. Czechoslovak Math. J. 46(121) (1996), 489–499. | MR | Zbl
[Zhou-Zhang] S. M. Zhou and J. Y. Zhang: Invariants concerning $f$-domination in graphs. Combinatorics and Graph Theory ’95. World Scientific, River Edge, NJ, 1999.
[Zhou-1] S. M. Zhou and X. N. Yue: Gallai-type equalities for $f$-domination and connected $f$-domination numbers. Graph Theory Notes of New York XXIX (1995), 30–32.