Relative polars in ordered sets
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 415-429 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of $R$-polars are studied. Connections between $R$-polars and prime ideals, especially in distributive sets, are found.
In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of $R$-polars are studied. Connections between $R$-polars and prime ideals, especially in distributive sets, are found.
Classification : 06A06, 06A99
Keywords: Ordered set; distributive set; ideal; prime ideal; $R$-polar; annihilator
@article{CMJ_2000_50_2_a15,
     author = {Hala\v{s}, Radom{\'\i}r},
     title = {Relative polars in ordered sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {415--429},
     year = {2000},
     volume = {50},
     number = {2},
     mrnumber = {1761398},
     zbl = {1047.06001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a15/}
}
TY  - JOUR
AU  - Halaš, Radomír
TI  - Relative polars in ordered sets
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 415
EP  - 429
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a15/
LA  - en
ID  - CMJ_2000_50_2_a15
ER  - 
%0 Journal Article
%A Halaš, Radomír
%T Relative polars in ordered sets
%J Czechoslovak Mathematical Journal
%D 2000
%P 415-429
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a15/
%G en
%F CMJ_2000_50_2_a15
Halaš, Radomír. Relative polars in ordered sets. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 415-429. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a15/

[1] Anderson, M., Feil, T.: Lattice-Ordered Groups (An Introduction). Dordrecht, Reidel, 1987. | MR

[2] Chajda, I.: Complemented ordered sets. Arch. Math. (Brno) 28 (1992), 25–34. | MR | Zbl

[3] Chajda, I., Halaš, R.: Indexed annihilators in ordered sets. Math. Slovaca 45 (1995), 501–508. | MR

[4] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407–423. | DOI | MR

[5] Duffus, D., Rival, I.: A structure theory for ordered sets. Discrete Math. 35 (1981), 53–110. | DOI | MR

[6] Erné, M.: Distributivgesetze und die Dedekindsche Schnittverwollständigung. Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145. | MR

[7] Grätzer, G.: Lattice Theory. Akademie Verlag, Berlin, 1978. | MR

[8] Halaš, R.: Pseudocomplemented ordered sets. Arch. Math. (Brno) 29 (1993), 153–160. | MR

[9] Halaš, R.: Characterization of distributive sets by generalized annihilators. Arch. Math. (Brno) 30 (1994), 25–27. | MR

[10] Halaš, R.: Decompositions of directed sets with zero. Math. Slovaca 45 (1995), 9–17. | MR

[11] Halaš, R.: Ideals and annihilators in ordered sets. Czechoslovak Math. J. 45(120) (1995), 127–134. | MR

[12] Halaš, R.: Some properties of Boolean ordered sets. Czechoslovak Math. J. 46(121) (1996), 93–98. | MR

[13] Halaš, R.: A characterization of finite Stone PC-ordered sets. Math. Bohem. 121 (1996), 117–120. | MR

[14] Halaš, R.: Annihilators and ideals in distributive and modular ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37. | MR

[15] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets. Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59. | MR

[16] Jakubík, J.: $M$-polars in lattices. Čas. Pěst. Mat. 95 (1970), 252–255. | MR

[17] Katriňák, T.: $M$-Polaren in halbgeordneten Mengen. Čas. Pěst. Mat. 95 (1970), 416–419. | MR

[18] Larmerová, J., Rachůnek, J.: Translations of modular and distributive ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23. | MR

[19] Niederle, J.: Boolean and distributive ordered sets: Characterization and representation by sets (preprint). | MR

[20] Rachůnek, J.: A characterization of $o$-distributive semilattices. Acta Sci. Math. (Szeged) 54 (1990), 241–246. | MR

[21] Rachůnek, J.: On $o$-modular and $o$-distributive semilattices. Math. Slovaca 42 (1992), 3–13.

[22] Rachůnek, J.: The ordinal variety of distributive ordered sets of width two. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32. | MR

[23] Rachůnek, J.: Non-modular and non-distributive ordered sets of lattices. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149.

[24] Šik, F.: A characterization of polarities the lattice of polars of which is Boolean. Czechoslovak Math. J. 91(106) (1981), 98–102.