Keywords: Ordered set; distributive set; ideal; prime ideal; $R$-polar; annihilator
@article{CMJ_2000_50_2_a15,
author = {Hala\v{s}, Radom{\'\i}r},
title = {Relative polars in ordered sets},
journal = {Czechoslovak Mathematical Journal},
pages = {415--429},
year = {2000},
volume = {50},
number = {2},
mrnumber = {1761398},
zbl = {1047.06001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a15/}
}
Halaš, Radomír. Relative polars in ordered sets. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 415-429. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a15/
[1] Anderson, M., Feil, T.: Lattice-Ordered Groups (An Introduction). Dordrecht, Reidel, 1987. | MR
[2] Chajda, I.: Complemented ordered sets. Arch. Math. (Brno) 28 (1992), 25–34. | MR | Zbl
[3] Chajda, I., Halaš, R.: Indexed annihilators in ordered sets. Math. Slovaca 45 (1995), 501–508. | MR
[4] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407–423. | DOI | MR
[5] Duffus, D., Rival, I.: A structure theory for ordered sets. Discrete Math. 35 (1981), 53–110. | DOI | MR
[6] Erné, M.: Distributivgesetze und die Dedekindsche Schnittverwollständigung. Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145. | MR
[7] Grätzer, G.: Lattice Theory. Akademie Verlag, Berlin, 1978. | MR
[8] Halaš, R.: Pseudocomplemented ordered sets. Arch. Math. (Brno) 29 (1993), 153–160. | MR
[9] Halaš, R.: Characterization of distributive sets by generalized annihilators. Arch. Math. (Brno) 30 (1994), 25–27. | MR
[10] Halaš, R.: Decompositions of directed sets with zero. Math. Slovaca 45 (1995), 9–17. | MR
[11] Halaš, R.: Ideals and annihilators in ordered sets. Czechoslovak Math. J. 45(120) (1995), 127–134. | MR
[12] Halaš, R.: Some properties of Boolean ordered sets. Czechoslovak Math. J. 46(121) (1996), 93–98. | MR
[13] Halaš, R.: A characterization of finite Stone PC-ordered sets. Math. Bohem. 121 (1996), 117–120. | MR
[14] Halaš, R.: Annihilators and ideals in distributive and modular ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37. | MR
[15] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets. Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59. | MR
[16] Jakubík, J.: $M$-polars in lattices. Čas. Pěst. Mat. 95 (1970), 252–255. | MR
[17] Katriňák, T.: $M$-Polaren in halbgeordneten Mengen. Čas. Pěst. Mat. 95 (1970), 416–419. | MR
[18] Larmerová, J., Rachůnek, J.: Translations of modular and distributive ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23. | MR
[19] Niederle, J.: Boolean and distributive ordered sets: Characterization and representation by sets (preprint). | MR
[20] Rachůnek, J.: A characterization of $o$-distributive semilattices. Acta Sci. Math. (Szeged) 54 (1990), 241–246. | MR
[21] Rachůnek, J.: On $o$-modular and $o$-distributive semilattices. Math. Slovaca 42 (1992), 3–13.
[22] Rachůnek, J.: The ordinal variety of distributive ordered sets of width two. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32. | MR
[23] Rachůnek, J.: Non-modular and non-distributive ordered sets of lattices. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149.
[24] Šik, F.: A characterization of polarities the lattice of polars of which is Boolean. Czechoslovak Math. J. 91(106) (1981), 98–102.