Random fixed point theorems for a certain class of mappings in Banach spaces
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 379-396 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(\Omega,\Sigma)$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \] where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p} $ for $1 p \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].
Let $(\Omega,\Sigma)$ be a measurable space and $C$ a nonempty bounded closed convex separable subset of $p$-uniformly convex Banach space $E$ for some $p > 1$. We prove random fixed point theorems for a class of mappings $T\: \Omega \times C \rightarrow C$ satisfying: for each $x, y \in C$, $\omega \in \Omega $ and integer $n \ge 1$, \[\Vert T^n(\omega , x) - T^n(\omega , y) \Vert \le a(\omega )\cdot \Vert x - y \Vert + b(\omega )\lbrace \Vert x - T^n(\omega ,x) \Vert + \Vert y - T^n(\omega ,y) \Vert \rbrace + c(\omega )\lbrace \Vert x - T^n(\omega ,y) \Vert + \Vert y - T^n(\omega ,x) \Vert \rbrace , \] where $a,b,c\: \Omega \rightarrow [0, \infty )$ are functions satisfying certain conditions and $T^n(\omega ,x)$ is the value at $x$ of the $n$-th iterate of the mapping $T(\omega ,\cdot )$. Further we establish for these mappings some random fixed point theorems in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{k,p} $ for $1 p \infty $ and $k \ge 0$. As a consequence of our main result, we also extend the results of Xu [43] and randomize the corresponding deterministic ones of Casini and Maluta [5], Goebel and Kirk [13], Tan and Xu [37], and Xu [39, 41].
Classification : 47H09, 47H10, 47H40, 60H25
Keywords: $p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping
@article{CMJ_2000_50_2_a12,
     author = {Jung, Jong Soo and Cho, Yeol Je and Kang, Shin Min and Lee, Byung Soo and Thakur, Balwant Singh},
     title = {Random fixed point theorems for a certain class of mappings in {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {379--396},
     year = {2000},
     volume = {50},
     number = {2},
     mrnumber = {1761395},
     zbl = {1048.47043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/}
}
TY  - JOUR
AU  - Jung, Jong Soo
AU  - Cho, Yeol Je
AU  - Kang, Shin Min
AU  - Lee, Byung Soo
AU  - Thakur, Balwant Singh
TI  - Random fixed point theorems for a certain class of mappings in Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 379
EP  - 396
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/
LA  - en
ID  - CMJ_2000_50_2_a12
ER  - 
%0 Journal Article
%A Jung, Jong Soo
%A Cho, Yeol Je
%A Kang, Shin Min
%A Lee, Byung Soo
%A Thakur, Balwant Singh
%T Random fixed point theorems for a certain class of mappings in Banach spaces
%J Czechoslovak Mathematical Journal
%D 2000
%P 379-396
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/
%G en
%F CMJ_2000_50_2_a12
Jung, Jong Soo; Cho, Yeol Je; Kang, Shin Min; Lee, Byung Soo; Thakur, Balwant Singh. Random fixed point theorems for a certain class of mappings in Banach spaces. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 379-396. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/

[1] J. Barros-Neto: An Introduction to the Theory of Distribution. Dekker, New York, 1973. | MR

[2] A. T. Bharucha-Reid: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–645. | DOI | MR | Zbl

[3] A. T. Bharucha-Reid: Random Integral Equations. Academic Press, New York and London, 1977. | MR | Zbl

[4] Gh. Bocsan: A general random fixed point theorem and applications to random equations. Rev. Roumaine Math. Pures Appl. 26 (1981), 375–379. | MR | Zbl

[5] W. L. Bynum: Normal structure coefficient for Banach space. Pacific J. Math. 86 (1980), 427–436. | DOI | MR

[6] E. Casini and E. Maluta: Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal. TMA 9 (1985), 103–108. | MR

[7] C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions. Springer, Berlin, 1977. | MR

[8] S. S. Chang: Random fixed point theorems for continuous random operators. Pacific J. Math. 105 (1983), 21–31. | DOI | MR | Zbl

[9] J. Daneš: On densifying and related mappings and their applications in nonlinear functional analysis. In: Theory of nonlinear Operators, Proc. Summer School, GDR, Akademie-Verlag, Berlin, Oct.1972 1974, pp. 15–56. | MR

[10] N. Dunford and J. Schwarz: Linear Operators. Vol I, Interscience, New York, 1958.

[11] W. H. Duren: Theory of $H^p$ Spaces. Academic Press, New York, 1970. | MR

[12] H. W. Engl: Random fixed point theorems for multivalued mappings. Pacific J. Math. 76 (1978), 351–360. | DOI | MR | Zbl

[13] K. Goebel and W. A. Kirk: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia. Math. 47 (1973), 135–140. | DOI | MR

[14] S. Itoh: A random fixed point theorem for a multivalued contraction. Pacific J. Math 68 (1977), 85–90. | DOI | MR | Zbl

[15] S. Itoh: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. | DOI | MR | Zbl

[16] C. J. Himmelberg: Measurable relations. Fund. Math. 87 (1975), 53–72. | DOI | MR | Zbl

[17] T. C. Lim: Fixed point theorems for uniformly Lipschitzian mappings in $L^p$ spaces. Nonlinear Anal. 7 (1983), 555–563. | MR

[18] T. C. Lim: On the normal structure coefficient and the bounded sequence coefficient. Proc. Amer. Math. Soc. 88 (1983), 262–264. | DOI | MR | Zbl

[19] T. C. Lim, H. K. Xu and Z. B. Xu: An $L^p$ inequalities and its applications to fixed point theory and approximation theory. In: Progress in Approximation Theory, Academic Press, 1991, pp. 609–624.

[20] T. C. Lin: Random approximations and random fixed point theorems for non-self maps. Proc. Amer. Math. Soc. 103 (1988), 1129–1135. | DOI | MR | Zbl

[21] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces II—Function Spaces. Springer-Verlag, New York, Berlin, 1979. | MR

[22] E. A. Lifshitz: Fixed point theorem for operators in strongly convex spaces. Voronez Gos. Univ. Trudy Math. Fak. 16 (1975), 23–28. (Russian)

[23] A. Nowak: Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Polish Acad. Sci. Math. 34 (1986), 487–494. | MR | Zbl

[24] N. S. Papageorgiou: Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc. 32 (1987), 507–514. | MR

[25] N. S. Papageorgiou: Deterministic and random fixed point theorems for single valued and multivalued functions. Rev. Roumaine Math. Pures Appl. 32 (1989), 53–61. | MR

[26] S. A. Pichugov: Jung’s constant of the space $L^p$. Mat. Zametki Math. Notes 43 43 (1988 1988), 609–614 348–354. (Russian) | MR

[27] B. Prus and R. Smarzemski: Strongly unique best approximations and centers in uniformly convex spaces. J. Math. Anal. Appl. 121 (1987), 10–21. | DOI | MR

[28] S. Prus: On Bynum’s fixed point theorem. Atti. Sem. Mat. Fis. Univ. Modena 38 (1990), 535–545. | MR | Zbl

[29] S. Prus: Some estimates for the normal structure coefficient in Banach spaces. Rend. Circ. Mat. Palermo XL(2) (1991), 128–135. | MR | Zbl

[30] L. E. Rybinski: Random fixed points and viable random solutions of functional differential inclusions. J. Math. Anal. Appl. 142 (1989), 53–61. | DOI | MR | Zbl

[31] V. M. Sehgal and C. Waters: Some random fixed point theorems for condensing operators. Proc. Amer. Math. Soc. 90 (1984), 425–429. | DOI | MR

[32] V. M. Sehgal and S. P. Singh: On random approximations and a random fixed point theorem for set valued mappings. Proc. Amer. Math. Soc. 95 (1985), 91–94. | DOI | MR

[33] R. Smarzewski: Strongly unique best approximations in Banach spaces II. J. Approx. Theory 51 (1987), 202–217. | DOI | MR

[34] R. Smarzewski: On the inequality of Bynum and Drew. J. Math. Anal. Appl. 150 (1990), 146–150. | DOI | MR

[35] K. K. Tan and X. Z. Yuan: Some random fixed point theorems. In Fixed Point Theory and Applications, K. K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. | MR

[36] K. K. Tan and X. Z. Yuan: On deterministic and random fixed points. Proc. Amer. Math. Soc 119 (1993), 849–856. | DOI | MR

[37] K. K. Tan and H. K. Xu: Fixed point theorems for Lipschitzian semigroups in Banach spaces. Nonlinear Anal. 20 (1993), 395–404. | DOI | MR

[38] D. H. Wagner: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859–903. | DOI | MR | Zbl

[39] H. K. Xu: Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex Banach spaces. J. Math. Anal. Appl. 152 (1990), 391–398. | DOI | MR

[40] H. K. Xu: Some random fixed point theorems for condensing and nonexpansive operators. Proc. Amer. Math. Soc. 110 (1990), 395–400. | DOI | MR | Zbl

[41] H. K. Xu: Inequalities in Banach spaces with applications. Nonlinear Anal. 16 (1991), 1127–1138. | DOI | MR | Zbl

[42] H. K. Xu: A random fixed point theorem for multivalued nonexpansive operators in a uniformly convex Banach space. Proc. Amer. Math. Soc. 117 (1993), 1089–1092. | DOI | MR

[43] H. K. Xu: Random fixed point theorems for nonlinear uniformly Lipschitzian mappings. Nonlinear Anal. 26 (1996), 1302–1311. | MR | Zbl

[44] C. Zalinescu: On uniformly convex functions. J. Math. Anal. Appl. 95 (1988), 344–374. | DOI | MR