Keywords: $p$-uniformly convex Banach space; normal structure; asymptotic center; random fixed points; generalized random uniformly Lipschitzian mapping
@article{CMJ_2000_50_2_a12,
author = {Jung, Jong Soo and Cho, Yeol Je and Kang, Shin Min and Lee, Byung Soo and Thakur, Balwant Singh},
title = {Random fixed point theorems for a certain class of mappings in {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {379--396},
year = {2000},
volume = {50},
number = {2},
mrnumber = {1761395},
zbl = {1048.47043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/}
}
TY - JOUR AU - Jung, Jong Soo AU - Cho, Yeol Je AU - Kang, Shin Min AU - Lee, Byung Soo AU - Thakur, Balwant Singh TI - Random fixed point theorems for a certain class of mappings in Banach spaces JO - Czechoslovak Mathematical Journal PY - 2000 SP - 379 EP - 396 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/ LA - en ID - CMJ_2000_50_2_a12 ER -
%0 Journal Article %A Jung, Jong Soo %A Cho, Yeol Je %A Kang, Shin Min %A Lee, Byung Soo %A Thakur, Balwant Singh %T Random fixed point theorems for a certain class of mappings in Banach spaces %J Czechoslovak Mathematical Journal %D 2000 %P 379-396 %V 50 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/ %G en %F CMJ_2000_50_2_a12
Jung, Jong Soo; Cho, Yeol Je; Kang, Shin Min; Lee, Byung Soo; Thakur, Balwant Singh. Random fixed point theorems for a certain class of mappings in Banach spaces. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 379-396. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a12/
[1] J. Barros-Neto: An Introduction to the Theory of Distribution. Dekker, New York, 1973. | MR
[2] A. T. Bharucha-Reid: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–645. | DOI | MR | Zbl
[3] A. T. Bharucha-Reid: Random Integral Equations. Academic Press, New York and London, 1977. | MR | Zbl
[4] Gh. Bocsan: A general random fixed point theorem and applications to random equations. Rev. Roumaine Math. Pures Appl. 26 (1981), 375–379. | MR | Zbl
[5] W. L. Bynum: Normal structure coefficient for Banach space. Pacific J. Math. 86 (1980), 427–436. | DOI | MR
[6] E. Casini and E. Maluta: Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal. TMA 9 (1985), 103–108. | MR
[7] C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions. Springer, Berlin, 1977. | MR
[8] S. S. Chang: Random fixed point theorems for continuous random operators. Pacific J. Math. 105 (1983), 21–31. | DOI | MR | Zbl
[9] J. Daneš: On densifying and related mappings and their applications in nonlinear functional analysis. In: Theory of nonlinear Operators, Proc. Summer School, GDR, Akademie-Verlag, Berlin, Oct.1972 1974, pp. 15–56. | MR
[10] N. Dunford and J. Schwarz: Linear Operators. Vol I, Interscience, New York, 1958.
[11] W. H. Duren: Theory of $H^p$ Spaces. Academic Press, New York, 1970. | MR
[12] H. W. Engl: Random fixed point theorems for multivalued mappings. Pacific J. Math. 76 (1978), 351–360. | DOI | MR | Zbl
[13] K. Goebel and W. A. Kirk: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia. Math. 47 (1973), 135–140. | DOI | MR
[14] S. Itoh: A random fixed point theorem for a multivalued contraction. Pacific J. Math 68 (1977), 85–90. | DOI | MR | Zbl
[15] S. Itoh: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. | DOI | MR | Zbl
[16] C. J. Himmelberg: Measurable relations. Fund. Math. 87 (1975), 53–72. | DOI | MR | Zbl
[17] T. C. Lim: Fixed point theorems for uniformly Lipschitzian mappings in $L^p$ spaces. Nonlinear Anal. 7 (1983), 555–563. | MR
[18] T. C. Lim: On the normal structure coefficient and the bounded sequence coefficient. Proc. Amer. Math. Soc. 88 (1983), 262–264. | DOI | MR | Zbl
[19] T. C. Lim, H. K. Xu and Z. B. Xu: An $L^p$ inequalities and its applications to fixed point theory and approximation theory. In: Progress in Approximation Theory, Academic Press, 1991, pp. 609–624.
[20] T. C. Lin: Random approximations and random fixed point theorems for non-self maps. Proc. Amer. Math. Soc. 103 (1988), 1129–1135. | DOI | MR | Zbl
[21] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces II—Function Spaces. Springer-Verlag, New York, Berlin, 1979. | MR
[22] E. A. Lifshitz: Fixed point theorem for operators in strongly convex spaces. Voronez Gos. Univ. Trudy Math. Fak. 16 (1975), 23–28. (Russian)
[23] A. Nowak: Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Polish Acad. Sci. Math. 34 (1986), 487–494. | MR | Zbl
[24] N. S. Papageorgiou: Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc. 32 (1987), 507–514. | MR
[25] N. S. Papageorgiou: Deterministic and random fixed point theorems for single valued and multivalued functions. Rev. Roumaine Math. Pures Appl. 32 (1989), 53–61. | MR
[26] S. A. Pichugov: Jung’s constant of the space $L^p$. Mat. Zametki Math. Notes 43 43 (1988 1988), 609–614 348–354. (Russian) | MR
[27] B. Prus and R. Smarzemski: Strongly unique best approximations and centers in uniformly convex spaces. J. Math. Anal. Appl. 121 (1987), 10–21. | DOI | MR
[28] S. Prus: On Bynum’s fixed point theorem. Atti. Sem. Mat. Fis. Univ. Modena 38 (1990), 535–545. | MR | Zbl
[29] S. Prus: Some estimates for the normal structure coefficient in Banach spaces. Rend. Circ. Mat. Palermo XL(2) (1991), 128–135. | MR | Zbl
[30] L. E. Rybinski: Random fixed points and viable random solutions of functional differential inclusions. J. Math. Anal. Appl. 142 (1989), 53–61. | DOI | MR | Zbl
[31] V. M. Sehgal and C. Waters: Some random fixed point theorems for condensing operators. Proc. Amer. Math. Soc. 90 (1984), 425–429. | DOI | MR
[32] V. M. Sehgal and S. P. Singh: On random approximations and a random fixed point theorem for set valued mappings. Proc. Amer. Math. Soc. 95 (1985), 91–94. | DOI | MR
[33] R. Smarzewski: Strongly unique best approximations in Banach spaces II. J. Approx. Theory 51 (1987), 202–217. | DOI | MR
[34] R. Smarzewski: On the inequality of Bynum and Drew. J. Math. Anal. Appl. 150 (1990), 146–150. | DOI | MR
[35] K. K. Tan and X. Z. Yuan: Some random fixed point theorems. In Fixed Point Theory and Applications, K. K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. | MR
[36] K. K. Tan and X. Z. Yuan: On deterministic and random fixed points. Proc. Amer. Math. Soc 119 (1993), 849–856. | DOI | MR
[37] K. K. Tan and H. K. Xu: Fixed point theorems for Lipschitzian semigroups in Banach spaces. Nonlinear Anal. 20 (1993), 395–404. | DOI | MR
[38] D. H. Wagner: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859–903. | DOI | MR | Zbl
[39] H. K. Xu: Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex Banach spaces. J. Math. Anal. Appl. 152 (1990), 391–398. | DOI | MR
[40] H. K. Xu: Some random fixed point theorems for condensing and nonexpansive operators. Proc. Amer. Math. Soc. 110 (1990), 395–400. | DOI | MR | Zbl
[41] H. K. Xu: Inequalities in Banach spaces with applications. Nonlinear Anal. 16 (1991), 1127–1138. | DOI | MR | Zbl
[42] H. K. Xu: A random fixed point theorem for multivalued nonexpansive operators in a uniformly convex Banach space. Proc. Amer. Math. Soc. 117 (1993), 1089–1092. | DOI | MR
[43] H. K. Xu: Random fixed point theorems for nonlinear uniformly Lipschitzian mappings. Nonlinear Anal. 26 (1996), 1302–1311. | MR | Zbl
[44] C. Zalinescu: On uniformly convex functions. J. Math. Anal. Appl. 95 (1988), 344–374. | DOI | MR