Almost Butler groups
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 367-378 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Generalizing the notion of the almost free group we introduce almost Butler groups. An almost $B_2$-group $G$ of singular cardinality is a $B_2$-group. Since almost $B_2$-groups have preseparative chains, the same result in regular cardinality holds under the additional hypothesis that $G$ is a $B_1$-group. Some other results characterizing $B_2$-groups within the classes of almost $B_1$-groups and almost $B_2$-groups are obtained. A theorem of stating that a group $G$ of weakly compact cardinality $\lambda $ having a $\lambda $-filtration consisting of pure $B_2$-subgroup is a $B_2$-group appears as a corollary.
Generalizing the notion of the almost free group we introduce almost Butler groups. An almost $B_2$-group $G$ of singular cardinality is a $B_2$-group. Since almost $B_2$-groups have preseparative chains, the same result in regular cardinality holds under the additional hypothesis that $G$ is a $B_1$-group. Some other results characterizing $B_2$-groups within the classes of almost $B_1$-groups and almost $B_2$-groups are obtained. A theorem of stating that a group $G$ of weakly compact cardinality $\lambda $ having a $\lambda $-filtration consisting of pure $B_2$-subgroup is a $B_2$-group appears as a corollary.
Classification : 20K20, 20K27
@article{CMJ_2000_50_2_a11,
     author = {Bican, Ladislav},
     title = {Almost {Butler} groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {367--378},
     year = {2000},
     volume = {50},
     number = {2},
     mrnumber = {1761394},
     zbl = {1051.20023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a11/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - Almost Butler groups
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 367
EP  - 378
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a11/
LA  - en
ID  - CMJ_2000_50_2_a11
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T Almost Butler groups
%J Czechoslovak Mathematical Journal
%D 2000
%P 367-378
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a11/
%G en
%F CMJ_2000_50_2_a11
Bican, Ladislav. Almost Butler groups. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 367-378. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a11/

[AH] Albrecht, U., Hill, P.: Butler groups of infinite rank and axiom 3. Czechoslovak Math. J. 37 (1987), 293–309. | MR

[B1] Bican, L.: On $B_2$-groups. Contemp. Math. 171 (1994), 13–19. | MR

[B2] Bican, L.: Butler groups and Shelah’s singular compactness. Comment. Math. Univ. Carolin. 37 (1996), 11–178. | MR | Zbl

[B3] Bican, L.: Families of preseparative subgroups. Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 149–162. | MR | Zbl

[BB] El Bashir, R., Bican, L.: Remarks on $B_2$-groups. Abelian groups and modules, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. 182 (1996), 133–142.

[BF] Bican, L., Fuchs, L.: Subgroups of Butler groups. Comm. Algebra 22 (1994), 1037–1047. | DOI | MR

[BR] Bican, L., Rangaswamy, K. M.: Smooth unions of Butler groups. Forum Math. 10 (1998), 233–247. | DOI | MR

[BRV] Bican, L., Rangaswamy, K. M., Vinsonhaler Ch.: Butler groups as smooth ascending unions. (to appear). | MR

[BS] Bican, L., Salce, L.: Infinite rank Butler groups. Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., Springer-Verlag 1006 (1983), 171–189.

[DHR] Dugas, M., Hill, P., Rangaswamy, K. M.: Infinite rank Butler groups II. Trans. Amer. Math. Soc. 320 (1990), 643–664. | MR

[DR] Dugas, Rangaswamy, K. M.: Infinite rank Butler groups. Trans. Amer. Math. Soc. 305 (1988), 129–142. | DOI | MR

[F1] Fuchs, L.: Infinite Abelian Groups, vol. I and II. Academic Press, New York, 1973 and 1977. | MR

[F2] Fuchs, L.: Infinite rank Butler groups. Preprint.

[F3] Fuchs, L.: Infinite rank Butler groups. J. Pure Appl. Algebra 98 (1995), 25–44. | DOI | MR

[FMa] Fuchs, L., Magidor, M.: Butler groups of arbitrary cardinality. Israel J. Math. 84 (1993), 239–263. | DOI | MR

[FR1] Fuchs, L., Rangaswamy, K. M.: Butler groups that are unions of subgroups with countable typesets. Arch. Math. 61 (1993), 105–110. | DOI | MR

[FR2] Fuchs, L., Rangaswamy, K. M.: Unions of chains of Butler groups. Contemp. Math. 171 (1994), 141–146. | DOI | MR

[FV] Fuchs, L., Viljoen, G.: Note on the extensions of Butler groups. Bull. Austral. Math. Soc. 41 (1990), 117–122. | DOI | MR

[H] Hodges, W.: In singular cardinality, locally free algebras are free. Algebra Universalis 12 (1981), 205–220. | DOI | MR | Zbl

[R] Rangaswamy, K. M.: A property of $B_2$-groups. Comment. Math. Univ. Carolin. 35 (1994), 627–631. | MR