Keywords: orthomodular lattice; state; noncompatible pairs; (quasi)variety
@article{CMJ_2000_50_2_a10,
author = {Mayet, R. and Pt\'ak, P.},
title = {Orthomodular lattices with state-separated noncompatible pairs},
journal = {Czechoslovak Mathematical Journal},
pages = {359--366},
year = {2000},
volume = {50},
number = {2},
mrnumber = {1761393},
zbl = {1047.06005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a10/}
}
Mayet, R.; Pták, P. Orthomodular lattices with state-separated noncompatible pairs. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 359-366. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a10/
[1] A. B. D’Andrea, S. Pulmannová: Quasivarieties of orthomodular lattices and Bell inequalities. Rep. Math. Phys. 37 (1996), 261–266. | DOI | MR
[2] L. Beran: Orthomodular Lattices (Algebraic Approach). Academia (Prague), 1984. | MR
[3] G. Bruns, G. Kalmbach: Varieties of orthomodular lattices I, II. Canad. J. Math. 23 (1971), 802–810. | DOI | MR
[4] R. Godowski: Varieties of orthomodular lattices with a strongly full set of states. Demonstratio Math. XIV, 3 (1981), 725–732. | MR | Zbl
[5] R. Godowski: States orthomodular lattices. Demonstratio Math. XV, 3 (1982), 817–822. | DOI | MR
[6] R. Godowski, R. J. Greechie: Some equations related to states on orthomodular lattices. Demonstratio Math. XVII, 1 (1984), 241–250. | MR
[7] J. Grätzer: Universal Algebra (2nd ed.). Springer-Verlag, New York/Heidelberg/Berlin, 1979. | MR | Zbl
[8] R. J. Greechie: Orthomodular lattices admitting no states. J. Combin. Theory 10 (1971), 119–132. | DOI | MR | Zbl
[9] S. Gudder: Stochastic Methods in Quantum Mechanics. Elsevier/North-Holland, Amsterdam, 1979. | MR | Zbl
[10] G. Kalmbach: Orthomodular Lattices. Academic Press, London, 1983. | MR | Zbl
[11] M. Matoušek: Orthomodular lattices with fully nontrivial commutators. Comment. Math. Univ. Carolin. 33, 1 (1992), 25–32. | MR
[12] R. Mayet: Varieties of orthomodular lattices related to states. Algebra Universalis 20 (1985), 368–386. | DOI | MR | Zbl
[13] R. Mayet: Equational bases for some varieties of orthomodular lattices related to states. Algebra Universalis 23 (1986), 167–195. | DOI | MR | Zbl
[14] P. Pták: Exotic logics. Colloq. Math. 54 (1987), 1–7. | DOI | MR
[15] P. Pták, S. Pulmanová: Orthomodular Structures as Quantum Logics. Kluwer, 1991.
[16] P. Pták, V. Rogalewicz: Measures on orthomodular partially ordered sets. J. Pure Appl. Algebra 28 (1983), 75–80. | DOI | MR
[17] F. Schultz: A characterization of state space of orthomodular lattices. J. Combin. Theory 17 (1974), 317–328. | DOI | MR
[18] V. Varadarajan: Geometry of Quantum Theory I, II. Van Nostrand, Princeton, 1968, 1970.