Orthomodular lattices with state-separated noncompatible pairs
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 359-366 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate by examples that these classes may (and need not) be varieties. The results supplement the research carried on in , , , , , , , and .
In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate by examples that these classes may (and need not) be varieties. The results supplement the research carried on in , , , , , , , and .
Classification : 06C15, 08C15, 81P10
Keywords: orthomodular lattice; state; noncompatible pairs; (quasi)variety
@article{CMJ_2000_50_2_a10,
     author = {Mayet, R. and Pt\'ak, P.},
     title = {Orthomodular lattices with state-separated noncompatible pairs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {359--366},
     year = {2000},
     volume = {50},
     number = {2},
     mrnumber = {1761393},
     zbl = {1047.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a10/}
}
TY  - JOUR
AU  - Mayet, R.
AU  - Pták, P.
TI  - Orthomodular lattices with state-separated noncompatible pairs
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 359
EP  - 366
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a10/
LA  - en
ID  - CMJ_2000_50_2_a10
ER  - 
%0 Journal Article
%A Mayet, R.
%A Pták, P.
%T Orthomodular lattices with state-separated noncompatible pairs
%J Czechoslovak Mathematical Journal
%D 2000
%P 359-366
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a10/
%G en
%F CMJ_2000_50_2_a10
Mayet, R.; Pták, P. Orthomodular lattices with state-separated noncompatible pairs. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 359-366. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a10/

[1] A. B. D’Andrea, S. Pulmannová: Quasivarieties of orthomodular lattices and Bell inequalities. Rep. Math. Phys. 37 (1996), 261–266. | DOI | MR

[2] L. Beran: Orthomodular Lattices (Algebraic Approach). Academia (Prague), 1984. | MR

[3] G. Bruns, G. Kalmbach: Varieties of orthomodular lattices I, II. Canad. J. Math. 23 (1971), 802–810. | DOI | MR

[4] R. Godowski: Varieties of orthomodular lattices with a strongly full set of states. Demonstratio Math. XIV, 3 (1981), 725–732. | MR | Zbl

[5] R. Godowski: States orthomodular lattices. Demonstratio Math. XV, 3 (1982), 817–822. | DOI | MR

[6] R. Godowski, R. J. Greechie: Some equations related to states on orthomodular lattices. Demonstratio Math. XVII, 1 (1984), 241–250. | MR

[7] J. Grätzer: Universal Algebra (2nd ed.). Springer-Verlag, New York/Heidelberg/Berlin, 1979. | MR | Zbl

[8] R. J. Greechie: Orthomodular lattices admitting no states. J. Combin. Theory 10 (1971), 119–132. | DOI | MR | Zbl

[9] S. Gudder: Stochastic Methods in Quantum Mechanics. Elsevier/North-Holland, Amsterdam, 1979. | MR | Zbl

[10] G. Kalmbach: Orthomodular Lattices. Academic Press, London, 1983. | MR | Zbl

[11] M. Matoušek: Orthomodular lattices with fully nontrivial commutators. Comment. Math. Univ. Carolin. 33, 1 (1992), 25–32. | MR

[12] R. Mayet: Varieties of orthomodular lattices related to states. Algebra Universalis 20 (1985), 368–386. | DOI | MR | Zbl

[13] R. Mayet: Equational bases for some varieties of orthomodular lattices related to states. Algebra Universalis 23 (1986), 167–195. | DOI | MR | Zbl

[14] P. Pták: Exotic logics. Colloq. Math. 54 (1987), 1–7. | DOI | MR

[15] P. Pták, S. Pulmanová: Orthomodular Structures as Quantum Logics. Kluwer, 1991.

[16] P. Pták, V. Rogalewicz: Measures on orthomodular partially ordered sets. J. Pure Appl. Algebra 28 (1983), 75–80. | DOI | MR

[17] F. Schultz: A characterization of state space of orthomodular lattices. J. Combin. Theory 17 (1974), 317–328. | DOI | MR

[18] V. Varadarajan: Geometry of Quantum Theory I, II. Van Nostrand, Princeton, 1968, 1970.