Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 225-244 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A bifurcation problem for variational inequalities \[ U(t) \in K, (\dot{U}(t)-B_\lambda U(t) - G(\lambda ,U(t)),\ Z - U(t))\ge 0\ \text{for} \text{all} \ Z\in K, \text{a.a.} \ t \ge 0 \] is studied, where $K$ is a closed convex cone in $\mathbb{R}^\kappa $, $\kappa \ge 3$, $B_\lambda $ is a $\kappa \times \kappa $ matrix, $G$ is a small perturbation, $\lambda $ a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case.
A bifurcation problem for variational inequalities \[ U(t) \in K, (\dot{U}(t)-B_\lambda U(t) - G(\lambda ,U(t)),\ Z - U(t))\ge 0\ \text{for} \text{all} \ Z\in K, \text{a.a.} \ t \ge 0 \] is studied, where $K$ is a closed convex cone in $\mathbb{R}^\kappa $, $\kappa \ge 3$, $B_\lambda $ is a $\kappa \times \kappa $ matrix, $G$ is a small perturbation, $\lambda $ a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case.
Classification : 34A25, 34A40, 34C23, 37G15, 47J20, 49J40
Keywords: bifurcation; periodic solutions; variational inequality; differential inequality; finite dimensional space
@article{CMJ_2000_50_2_a0,
     author = {Ku\v{c}era, Milan},
     title = {Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {225--244},
     year = {2000},
     volume = {50},
     number = {2},
     mrnumber = {1761383},
     zbl = {1047.37034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a0/}
}
TY  - JOUR
AU  - Kučera, Milan
TI  - Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 225
EP  - 244
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a0/
LA  - en
ID  - CMJ_2000_50_2_a0
ER  - 
%0 Journal Article
%A Kučera, Milan
%T Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $
%J Czechoslovak Mathematical Journal
%D 2000
%P 225-244
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a0/
%G en
%F CMJ_2000_50_2_a0
Kučera, Milan. Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/CMJ_2000_50_2_a0/

[1] J. C. Alexander, J. A. Yorke: Global bifurcation of periodic orbits. Amer. J. Math. 100 (1978), no. 2, 263–292. | DOI | MR

[2] J. P. Aubin, A. Cellina: Differential Inclusions. Springer Verlag, Berlin, 1984. | MR

[3] M. Bosák, M. Kučera: A bifurcation of periodic solutions to differential inequalities in $\mathbb{R}^3$. Czechoslovak Math. J. 42 (117) (1992), no. 2, 339–363. | MR

[4] Sh.-N. Chow, J. Mallet-Paret: The Fuller index and global Hopf bifurcation. J. Differential Equations 29 (1978), no. 1, 66–85. | DOI | MR

[5] J. Eisner, M. Kučera: Hopf bifurcation and ordinary differential inequalities. Czechoslovak Math. J. 45 (120) (1995), no. 4, 577–608. | MR

[6] M. Kučera: Bifurcation of periodic solutions to ordinary differential inequalities. Colloq. Math. Soc. János Bolyai. Differential Equations. 62 (1991), 227–255. | MR

[7] M. Kučera: Bifurcation of periodic solutions to variational inequalities in $\mathbb{R}^\kappa $ based on Alexander-Yorke theorem. Czechoslovak Math. J. 49 (124) (1999), no. 3, 449–474. | DOI | MR

[8] M. Kučera: Stability of bifurcating periodic solutions of differential inequalities in $\mathbb{R}^3$. Math. Nachr 197 (1999), 61–88. | DOI | MR

[9] J. E. Marsden, M. Mc Cracken: The Hopf Bifurcation Theorem and Applications. Springer, Berlin, 1976. | MR

[10] P. H. Rabinowitz: Some global results for non-linear eigenvalue problems. J. Funct. Anal. 7 (1971), 487–513. | DOI | MR

[11] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory. Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971. | Zbl