Keywords: spaces of linear operators; copies of $c_0$; approximation properties
@article{CMJ_2000_50_1_a9,
author = {Emmanuele, G. and John, K.},
title = {The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized},
journal = {Czechoslovak Mathematical Journal},
pages = {75--82},
year = {2000},
volume = {50},
number = {1},
mrnumber = {1745461},
zbl = {1040.46019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a9/}
}
TY - JOUR AU - Emmanuele, G. AU - John, K. TI - The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized JO - Czechoslovak Mathematical Journal PY - 2000 SP - 75 EP - 82 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a9/ LA - en ID - CMJ_2000_50_1_a9 ER -
Emmanuele, G.; John, K. The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a9/
[1] J. Diestel, T. J. Morrison: The Radon-Nikodym property for the space of operators. Math. Nachr. 92 (1979), 7–12. | DOI | MR
[2] G. Emmanuele: Dominated operators on $C[0,1]$ and the (CRP). Collect. Math. 41(1) (1990), 21–25. | MR | Zbl
[3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators. Math. Proc. Cambridge Philos. Soc. 111 (1992), 331–335. | DOI | MR
[4] G. Emmanuele, K. John: Uncomplementability of spaces of compact operators in larger spaces of operators. Czechoslovak Math. J (to appear). | MR
[5] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24 (1980), 196–205. | DOI | MR | Zbl
[6] K. John: On the uncomplemented subspace $K(X,Y)$. Czechoslovak Math. J. 42 (1992), 167–173. | MR | Zbl
[7] N. J. Kalton: Spaces of compact operators. Math. Ann. 208 (1974), 267–278. | DOI | MR | Zbl
[8] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces. EMG 92 Springer Verlag, 1977. | MR
[9] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces. EMG 97 Springer Verlag, 1979. | MR
[10] A. Pełczyński: A connection between weak unconditional convergence and weak sequential completeness in Banach spaces. Bull. Acad. Polon. Sci. 6 (1958), 251–253. | MR