The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 75-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A32, 46B03, 46B25, 46B28, 47L05
Keywords: spaces of linear operators; copies of $c_0$; approximation properties
@article{CMJ_2000_50_1_a9,
     author = {Emmanuele, G. and John, K.},
     title = {The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized},
     journal = {Czechoslovak Mathematical Journal},
     pages = {75--82},
     year = {2000},
     volume = {50},
     number = {1},
     mrnumber = {1745461},
     zbl = {1040.46019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a9/}
}
TY  - JOUR
AU  - Emmanuele, G.
AU  - John, K.
TI  - The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 75
EP  - 82
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a9/
LA  - en
ID  - CMJ_2000_50_1_a9
ER  - 
%0 Journal Article
%A Emmanuele, G.
%A John, K.
%T The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized
%J Czechoslovak Mathematical Journal
%D 2000
%P 75-82
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a9/
%G en
%F CMJ_2000_50_1_a9
Emmanuele, G.; John, K. The space of compact operators contains $c_0$ when a noncompact operator is suitably factorized. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a9/

[1] J. Diestel, T. J. Morrison: The Radon-Nikodym property for the space of operators. Math. Nachr. 92 (1979), 7–12. | DOI | MR

[2] G. Emmanuele: Dominated operators on $C[0,1]$ and the (CRP). Collect. Math. 41(1) (1990), 21–25. | MR | Zbl

[3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators. Math. Proc. Cambridge Philos. Soc. 111 (1992), 331–335. | DOI | MR

[4] G. Emmanuele, K. John: Uncomplementability of spaces of compact operators in larger spaces of operators. Czechoslovak Math. J (to appear). | MR

[5] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24 (1980), 196–205. | DOI | MR | Zbl

[6] K. John: On the uncomplemented subspace $K(X,Y)$. Czechoslovak Math. J. 42 (1992), 167–173. | MR | Zbl

[7] N. J. Kalton: Spaces of compact operators. Math. Ann. 208 (1974), 267–278. | DOI | MR | Zbl

[8] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces. EMG 92 Springer Verlag, 1977. | MR

[9] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces. EMG 97 Springer Verlag, 1979. | MR

[10] A. Pełczyński: A connection between weak unconditional convergence and weak sequential completeness in Banach spaces. Bull. Acad. Polon. Sci. 6 (1958), 251–253. | MR