@article{CMJ_2000_50_1_a6,
author = {John, Kamil and Werner, Dirk},
title = {$M$-ideals of compact operators into $\ell_p$},
journal = {Czechoslovak Mathematical Journal},
pages = {51--57},
year = {2000},
volume = {50},
number = {1},
mrnumber = {1745458},
zbl = {1040.46020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a6/}
}
John, Kamil; Werner, Dirk. $M$-ideals of compact operators into $\ell_p$. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a6/
[1] E. M. Alfsen and E. G. Effros: Structure in real Banach spaces. Parts I and II. Ann. of Math. 96 (1972), 98–173. | DOI | MR
[2] P. G. Casazza and N. J. Kalton: Notes on approximation properties in separable Banach spaces. Geometry of Banach Spaces, Proc. Conf. Strobl 1989, P. F. X. Müller and W. Schachermayer (eds.), London Mathematical Society Lecture Note Series 158, Cambridge University Press, 1990, pp. 49–63. | MR
[3] G. Godefroy, N. J. Kalton, and P. D. Saphar: Unconditional ideals in Banach spaces. Studia Math. 104 (1993), 13–59. | MR
[4] P. Harmand, D. Werner, and W. Werner: $M$-Ideals in Banach Spaces and Banach Algebras. Lecture Notes in Math. 1547, Springer, Berlin-Heidelberg-New York, 1993. | MR
[5] N. J. Kalton: $M$-ideals of compact operators. Illinois J. Math. 37 (1993), 147–169. | DOI | MR | Zbl
[6] N. J. Kalton and D. Werner: Property $(M)$, $M$-ideals and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137–178. | MR
[7] A. Lima: Property $(wM^*)$ and the unconditional metric compact approximation property. Studia Math. 113 (1995), 249–263. | DOI | MR | Zbl
[8] D. Li: Complex unconditional metric approximation property for $C_\Lambda (\mathbf T)$ spaces. Preprint (1995). | MR
[9] Ch. A. McCarthy: $c_p$. Israel J. Math. 5 (1967), 249–271. | MR
[10] E. Oja: Dual de l’espace des opérateurs linéaires continus. C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983–986. | MR | Zbl
[11] D. Werner: New classes of Banach spaces which are $M$-ideals in their biduals. Math. Proc. Cambridge Phil. Soc. 111 (1992), 337–354. | DOI | MR | Zbl