A barrier method for quasilinear ordinary differential equations of the curvature type
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 185-196
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMJ_2000_50_1_a19,
author = {Kusahara, Toshiaki and Usami, Hiroyuki},
title = {A barrier method for quasilinear ordinary differential equations of the curvature type},
journal = {Czechoslovak Mathematical Journal},
pages = {185--196},
year = {2000},
volume = {50},
number = {1},
mrnumber = {1745471},
zbl = {1046.34009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a19/}
}
TY - JOUR AU - Kusahara, Toshiaki AU - Usami, Hiroyuki TI - A barrier method for quasilinear ordinary differential equations of the curvature type JO - Czechoslovak Mathematical Journal PY - 2000 SP - 185 EP - 196 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a19/ LA - en ID - CMJ_2000_50_1_a19 ER -
Kusahara, Toshiaki; Usami, Hiroyuki. A barrier method for quasilinear ordinary differential equations of the curvature type. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 185-196. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a19/
[1] S. R. Bernfeld and V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems. Academic Press, Inc., New York, 1974. | MR
[2] P. Clément, R. Manásevich and E. Mitidieri: On a modified capillary equation. J. Differential Equations 124 (1996), 343–358. | DOI | MR
[3] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. | MR
[4] H. Usami: Nonexistence of positive solutions of Neumann problems for elliptic inequalities of the mean curvature type. Hiroshima Math. J 27 (1997), 271–293. | DOI | MR | Zbl