@article{CMJ_2000_50_1_a18,
author = {\v{S}al\'at, Tibor},
title = {Remarks on {Steinhaus{\textquoteright}} property and ratio sets of sets of positive integers},
journal = {Czechoslovak Mathematical Journal},
pages = {175--183},
year = {2000},
volume = {50},
number = {1},
mrnumber = {1745470},
zbl = {1034.11010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a18/}
}
Šalát, Tibor. Remarks on Steinhaus’ property and ratio sets of sets of positive integers. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 175-183. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a18/
[1] T. M. Apostol: Introduction to Analytic Number Theory. Springer-Verlag, New York-Heidelberg-Berlin, 1976. | MR | Zbl
[2] T. C. Brown, A. R. Freedman: Arithmetic progressions in lacunary sets. Rocky Mountain J. Math. 17 (1987), 587–596. | DOI | MR
[3] T. C. Brown, A. R. Freedman: The uniform density of sets of integers and Fermat’s last theorem. C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1–6. | MR
[4] J. Bukor, M. Kmeťová, J. Tóth: Notes on ratio sets of sets of natural numbers. Acta Math. (Nitra) 2 (1995), 35–40.
[5] D. Hobby, D. M. Silberger: Quotients of primes. Amer. Math. Monthly 100 (1993), 50–52. | DOI | MR
[6] J. Nagata: Modern General Topology. North-Holland Publ. Comp. Amsterdam-London-Groningen-New York, 1974. | MR
[7] W. Narkiewicz, T. Šalát: A theorem of H. Steinhaus and $(R)$-dense sets of positive integers. Czechoslovak Math. J. 34(109) (1984), 355–361. | MR
[8] H. H. Ostmann: Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. | MR | Zbl
[9] T. Šalát: Cantorsche Entwicklungen der reellen Zahlen und das Husdorffsche. Mass. Publ. Math. Inst. Hung. Acad. Sci. 6 (1961), 15–41. | MR
[10] T. Šalát: On Hausdorff measure of linear sets (Russian). Czechoslovak Math. J. 11(86) (1961), 24–56. | MR
[11] T. Šalát: Über die Cantorsche Reihen. Czechoslovak Math. J. 18(93) (1968), 25–56.
[12] T. Šalát: On ratio sets of sets of natural numbers. Acta Arith. 15 (1969), 273–278. | DOI | MR
[13] T. Šalát: Quotientbasen und $(R)$-dichte Mengen. Acta Arithm. 19 (1971), 63–78. | DOI | MR | Zbl
[14] P. Starni: Answers to two questions concerning quotients of primes. Amer. Math. Monthly 102 (1995), 347–349. | DOI | MR | Zbl
[15] W. Sierpiński: Elementary Theory of Numbers. PWN, Warszawa, 1964. | MR