Stability of global solutions to one-phase Stefan problem for a semilinear parabolic equation
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 135-153 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B35, 35K55, 35K60, 35R35
@article{CMJ_2000_50_1_a16,
     author = {Aiki, Toyohiko and Imai, Hitoshi},
     title = {Stability of global solutions to one-phase {Stefan} problem for a semilinear parabolic equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {135--153},
     year = {2000},
     volume = {50},
     number = {1},
     mrnumber = {1745468},
     zbl = {1037.35034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a16/}
}
TY  - JOUR
AU  - Aiki, Toyohiko
AU  - Imai, Hitoshi
TI  - Stability of global solutions to one-phase Stefan problem for a semilinear parabolic equation
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 135
EP  - 153
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a16/
LA  - en
ID  - CMJ_2000_50_1_a16
ER  - 
%0 Journal Article
%A Aiki, Toyohiko
%A Imai, Hitoshi
%T Stability of global solutions to one-phase Stefan problem for a semilinear parabolic equation
%J Czechoslovak Mathematical Journal
%D 2000
%P 135-153
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a16/
%G en
%F CMJ_2000_50_1_a16
Aiki, Toyohiko; Imai, Hitoshi. Stability of global solutions to one-phase Stefan problem for a semilinear parabolic equation. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 135-153. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a16/

[Ai] T. Aiki: The existence of solutions to two-phase Stefan problems for nonlinear parabolic equations. Control Cyb. 19 (1990), 41–62. | MR

[Ai(blow)] T. Aiki: Behavior of free boundaries blow-up solutions to one-phase Stefan problems. Nonlinear Anal. TMA. 26 (1996), 707–723. | MR

[Ai-Ima] T. Aiki and H. Imai: Behavior of blow-up solutions to one-phase Stefan problems with Dirichlet boundary conditions. Preprint. | MR

[Ai-Ima(G)] T. Aiki and H. Imai: Global existence of solutions to one-phase Stefan problems for semilinear parabolic equations. Tech. Rep. Math. Sci., Chiba Univ. 11(11) (1995).

[Ai-Ke] T. Aiki and N. Kenmochi: Behavior of solutions to two-phase Stefan problems for nonlinear parabolic equations. Bull. Fac. Education, Chiba Univ. 39 (1991), 15–62.

[Ai-Ima(IFIP)] T. Aiki and H. Imai: Blow-up points to one phase Stefan problems with Dirichlet boundary conditions. Modelling and Optimization of Distributed Parameter Systems, Chapman & Hall, 1996, pp. 83–89. | MR

[FP] A. Fasano and M. Primicerio: Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions. J. Math. Anal. Appl. 72 (1979), 247–273. | DOI | MR

[Ke] N. Kenmochi: A new proof of the uniqueness of solutions to two-phase Stefan problems for nonlinear parabolic equations. Free boundary value problems, Proc. Conf., ISNM 95, Birkhäuser, Basel, 1990, pp. 101–126. | MR | Zbl

[Ke(SPG)] N. Kenmochi: Global existence of solutions of two-phase Stefan problems with nonlinear flux conditions described by time-dependent subdifferentials. Control Cyb. 19 (1990), 7–39. | MR | Zbl

[LSU] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva: Linear and Quasi-Linear Equations of Parabolic Type. Transl. Math. Monograph 23, Amer. Math. Soc., Providence R. I., 1968. | DOI | MR