A remark on the centered $n$-dimensional Hardy-Littlewood maximal function
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 103-112 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the behaviour of the $n$-dimensional centered Hardy-Littlewood maximal operator associated to the family of cubes with sides parallel to the axes, improving the previously known lower bounds for the best constants $c_n$ that appear in the weak type $(1,1)$ inequalities.
We study the behaviour of the $n$-dimensional centered Hardy-Littlewood maximal operator associated to the family of cubes with sides parallel to the axes, improving the previously known lower bounds for the best constants $c_n$ that appear in the weak type $(1,1)$ inequalities.
Classification : 42A99, 42B25
Keywords: Hardy-Littlewood maximal function
@article{CMJ_2000_50_1_a13,
     author = {Aldaz, J. M.},
     title = {A remark on the centered $n$-dimensional {Hardy-Littlewood} maximal function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {103--112},
     year = {2000},
     volume = {50},
     number = {1},
     mrnumber = {1745465},
     zbl = {1037.42021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a13/}
}
TY  - JOUR
AU  - Aldaz, J. M.
TI  - A remark on the centered $n$-dimensional Hardy-Littlewood maximal function
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 103
EP  - 112
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a13/
LA  - en
ID  - CMJ_2000_50_1_a13
ER  - 
%0 Journal Article
%A Aldaz, J. M.
%T A remark on the centered $n$-dimensional Hardy-Littlewood maximal function
%J Czechoslovak Mathematical Journal
%D 2000
%P 103-112
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a13/
%G en
%F CMJ_2000_50_1_a13
Aldaz, J. M. A remark on the centered $n$-dimensional Hardy-Littlewood maximal function. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 103-112. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a13/

[A] J. M. Aldaz: Remarks on the Hardy-Littlewood maximal function. Proc. Roy. Soc. Edinburgh Sect. A 128A (1998), 1–9. | MR | Zbl

[BH] D. A. Brannan and W. K. Hayman: Research problems in complex analysis. Bull. London Math. Soc. 21 (1989), 1–35. | DOI | MR

[DrGaSt] Ron Dror, Suman Ganguli, and Robert S. Strichartz: A search for best constants in the Hardy-Littlewood Maximal Theorem. J. Fourier Anal. Appl. 2 (1996), 473–486. | DOI | MR

[Gu] M. de Guzmán: Differentiation of Integrals in $\mathbb{R}^n$. Lecture Notes in Math. (481), Springer-Verlag, 1975. | MR

[M] M. Trinidad Menarguez: Tecnicas de discretización en análisis armónico para el estudio de acotaciones debiles de operadores maximales e integrales singulares. Ph. D. Thesis, Universidad Complutense de Madrid, 1990.

[MS] M. Trinidad Menarguez and F. Soria: Weak type $(1,1)$ inequalities for maximal convolution operators. Rend. Circ. Mat. Palermo XLI (1992), 342–352. | MR