@article{CMJ_2000_50_1_a13,
author = {Aldaz, J. M.},
title = {A remark on the centered $n$-dimensional {Hardy-Littlewood} maximal function},
journal = {Czechoslovak Mathematical Journal},
pages = {103--112},
year = {2000},
volume = {50},
number = {1},
mrnumber = {1745465},
zbl = {1037.42021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a13/}
}
Aldaz, J. M. A remark on the centered $n$-dimensional Hardy-Littlewood maximal function. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 103-112. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a13/
[A] J. M. Aldaz: Remarks on the Hardy-Littlewood maximal function. Proc. Roy. Soc. Edinburgh Sect. A 128A (1998), 1–9. | MR | Zbl
[BH] D. A. Brannan and W. K. Hayman: Research problems in complex analysis. Bull. London Math. Soc. 21 (1989), 1–35. | DOI | MR
[DrGaSt] Ron Dror, Suman Ganguli, and Robert S. Strichartz: A search for best constants in the Hardy-Littlewood Maximal Theorem. J. Fourier Anal. Appl. 2 (1996), 473–486. | DOI | MR
[Gu] M. de Guzmán: Differentiation of Integrals in $\mathbb{R}^n$. Lecture Notes in Math. (481), Springer-Verlag, 1975. | MR
[M] M. Trinidad Menarguez: Tecnicas de discretización en análisis armónico para el estudio de acotaciones debiles de operadores maximales e integrales singulares. Ph. D. Thesis, Universidad Complutense de Madrid, 1990.
[MS] M. Trinidad Menarguez and F. Soria: Weak type $(1,1)$ inequalities for maximal convolution operators. Rend. Circ. Mat. Palermo XLI (1992), 342–352. | MR