Keywords: Prime submodule; primary submodule; primary decomposition; Associated primes
@article{CMJ_2000_50_1_a10,
author = {Tiraṣ, Y\"ucel and Harmanci, Abdullah},
title = {On prime submodules and primary decomposition},
journal = {Czechoslovak Mathematical Journal},
pages = {83--90},
year = {2000},
volume = {50},
number = {1},
mrnumber = {1745462},
zbl = {1036.13010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a10/}
}
Tiraṣ, Yücel; Harmanci, Abdullah. On prime submodules and primary decomposition. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 83-90. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a10/
[1] J. Jenkins and P. F. Smith: On the prime radical of a module over a commutative ring. Comm. Algebra 20 (12) (1992), 3593–3602. | DOI | MR
[2] C. P. Lu: Prime submodules of modules. Comm. Math. Univ. Sancti. Pauli 33 (1984), 61–69. | MR | Zbl
[3] C. P. Lu: $M$-radicals of submodules in modules. Math. Japon. 34 (1989), no. 2, 211–219. | MR | Zbl
[4] C. P. Lu: $M$-radicals of submodules in modules II. Math. Japon. 35 (1990), no. 5, 991–1001. | MR | Zbl
[5] S. M. George, R. Y. McCasland and P. F. Smith: A principal ideal theorem analogue for modules over commutative rings. Comm. Algebra 22 (6) (1994), 2083–2099. | DOI | MR
[6] R. Y. McCasland and M. E. Moore: On radicals of submodules of finitely generated modules. Canad. Math. Bull. 29 (1) (1986). | DOI | MR
[7] R. Y. McCasland and P. F. Smith: Prime submodules of Noetherian modules. Rocky Mountain J. Math. 23 (1993), no. 3. | DOI | MR
[8] H. Matsumura: Commutative Ring Theory. Cambridge University Press, 1980. | MR
[9] R. Y. Sharp: Steps in Commutative Algebra. Cambridge University Press, 1990. | MR | Zbl