@article{CMJ_2000_50_1_a1,
author = {Nebesk\'y, Ladislav},
title = {An axiomatic approach to metric properties of connected graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {3--14},
year = {2000},
volume = {50},
number = {1},
mrnumber = {1745453},
zbl = {1033.05034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a1/}
}
Nebeský, Ladislav. An axiomatic approach to metric properties of connected graphs. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a1/
[1] M. Behzad, G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston, 1979. | MR
[2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.), 1969. | MR | Zbl
[3] H. M. Mulder: The Interval Function of a Graph. Mathematisch Centrum. Amsterdam, 1980. | MR | Zbl
[4] L. Nebeský: A characterization of the set of all shortest paths in a connected graph. Math. Bohem. 119 (1994), 15–20. | MR
[5] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44 (119) (1994), 173–178. | MR
[6] L. Nebeský: Visibilities and sets of shortest paths in a connected graph. Czechoslovak Math. J. 45 (120) (1995), 563–570. | MR
[7] L. Nebeský: On the set of all shortest paths of a given length in a connected graph. Czechoslovak Math. J. 46 (121) (1996), 155–160. | MR
[8] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47 (122) (1997), 149–161. | DOI | MR
[9] L. Nebeský: An algebraic characterization of geodetic graphs. Czechoslovak Math. J. 48 (123) (1998), 701–710. | DOI | MR