An axiomatic approach to metric properties of connected graphs
Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C12
@article{CMJ_2000_50_1_a1,
     author = {Nebesk\'y, Ladislav},
     title = {An axiomatic approach to metric properties of connected graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {3--14},
     year = {2000},
     volume = {50},
     number = {1},
     mrnumber = {1745453},
     zbl = {1033.05034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a1/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - An axiomatic approach to metric properties of connected graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2000
SP  - 3
EP  - 14
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a1/
LA  - en
ID  - CMJ_2000_50_1_a1
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T An axiomatic approach to metric properties of connected graphs
%J Czechoslovak Mathematical Journal
%D 2000
%P 3-14
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a1/
%G en
%F CMJ_2000_50_1_a1
Nebeský, Ladislav. An axiomatic approach to metric properties of connected graphs. Czechoslovak Mathematical Journal, Tome 50 (2000) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/CMJ_2000_50_1_a1/

[1] M. Behzad, G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston, 1979. | MR

[2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.), 1969. | MR | Zbl

[3] H. M. Mulder: The Interval Function of a Graph. Mathematisch Centrum. Amsterdam, 1980. | MR | Zbl

[4] L. Nebeský: A characterization of the set of all shortest paths in a connected graph. Math. Bohem. 119 (1994), 15–20. | MR

[5] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44 (119) (1994), 173–178. | MR

[6] L. Nebeský: Visibilities and sets of shortest paths in a connected graph. Czechoslovak Math. J. 45 (120) (1995), 563–570. | MR

[7] L. Nebeský: On the set of all shortest paths of a given length in a connected graph. Czechoslovak Math. J. 46 (121) (1996), 155–160. | MR

[8] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47 (122) (1997), 149–161. | DOI | MR

[9] L. Nebeský: An algebraic characterization of geodetic graphs. Czechoslovak Math. J. 48 (123) (1998), 701–710. | DOI | MR