Keywords: partial differential-functional equations; mixed problem; generalized solutions; local existence; bicharacteristics; successive approximations
@article{CMJ_1999_49_4_a9,
author = {Cz{\l}api\'nski, Tomasz},
title = {On the mixed problem for hyperbolic partial differential-functional equations of the first order},
journal = {Czechoslovak Mathematical Journal},
pages = {791--809},
year = {1999},
volume = {49},
number = {4},
mrnumber = {1746704},
zbl = {1010.35021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a9/}
}
TY - JOUR AU - Człapiński, Tomasz TI - On the mixed problem for hyperbolic partial differential-functional equations of the first order JO - Czechoslovak Mathematical Journal PY - 1999 SP - 791 EP - 809 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a9/ LA - en ID - CMJ_1999_49_4_a9 ER -
Człapiński, Tomasz. On the mixed problem for hyperbolic partial differential-functional equations of the first order. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 791-809. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a9/
[1] V. E. Abolina, A. D. Myshkis: Mixed problem for a semilinear hyperbolic system on a plane. Mat. Sb. 50 (1960), 423–442 (Russian).
[2] P. Bassanini: On a boundary value problem for a class of quasilinear hyperbolic systems in two independent variables. Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 343–372. | MR
[3] P. Bassanini: On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form. Boll. Un. Mat. Ital. (5) 14-A (1977), 325–332. | MR | Zbl
[4] P. Bassanini: Iterative methods for quasilinear hyperbolic systems. Boll. Un. Mat. Ital. (6) 1-B (1982), 225–250. | MR | Zbl
[5] P. Bassanini, J. Turo: Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations. Ann. Mat. Pura Appl. 156 (1990), 211–230. | DOI | MR
[6] P. Brandi, R. Ceppitelli: Generalized solutions for nonlinear hyperbolic systems in hereditary setting, preprint.
[7] P. Brandi, Z. Kamont, A. Salvadori: Existence of weak solutions for partial differential-functional equations. (to appear).
[8] L. Cesari: A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form. Ann. Sc. Norm. Sup. Pisa (4) 1 (1974), 311–358. | MR
[9] L. Cesari: A boundary value problem for quasilinear hyperbolic systems. Riv. Mat. Univ. Parma 3 (1974), 107–131. | MR
[10] S. Cinquini: Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Rend. Sem. Mat. Fis. Univ. Milano 52 (1982).
[11] M. Cinquini-Cibrario: Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Rend. Ist. Lombardo 104 (1970), 759–829. | MR | Zbl
[12] M. Cinquini-Cibrario: Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Ann. Mat. Pura. Appl. 140 (1985), 223–253. | DOI | MR
[13] T. Człapiński: On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order. Zeit. Anal. Anwend. 10 (1991), 169–182. | DOI
[14] T. Dzłapiński: On the mixed problem for quasilinear partial differential-functional equations of the first order. Zeit. Anal. Anwend. 16 (1997), 463–478. | DOI
[15] T. Człapiński: Existence of generalized solutions for hyperbolic partial differential-functional equations with delay at derivatives. (to appear).
[16] Z. Kamont, K. Topolski: Mixed problems for quasilinear hyperbolic differential-functional systems. Math. Balk. 6 (1992), 313–324. | MR
[17] A. D. Myshkis; A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables. Diff. Urav. 17 (1981), 488–500. (Russian) | MR | Zbl
[18] A. D. Myshkis, A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables. Proc. of Sec. Conf. Diff. Equat. and Appl., Rousse (1982), 524–529. (Russian)
[19] J. Turo: On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order. Czechoslovak Math. J. 36 (1986), 185–197. | MR | Zbl
[20] J. Turo: Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables. Ann. Polon. Math. 49 (1989), 259–278. | DOI | MR | Zbl