On the mixed problem for hyperbolic partial differential-functional equations of the first order
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 791-809 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order \[ D_xz(x,y) = f(x,y,z_{(x,y)}, D_yz(x,y)), \] where $z_{(x,y)} \: [-\tau ,0] \times [0,h] \rightarrow \mathbb{R}$ is a function defined by $z_{(x,y)}(t,s) = z(x+t, y+s)$, $(t,s) \in [-\tau ,0] \times [0,h]$. Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.
We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order \[ D_xz(x,y) = f(x,y,z_{(x,y)}, D_yz(x,y)), \] where $z_{(x,y)} \: [-\tau ,0] \times [0,h] \rightarrow \mathbb{R}$ is a function defined by $z_{(x,y)}(t,s) = z(x+t, y+s)$, $(t,s) \in [-\tau ,0] \times [0,h]$. Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.
Classification : 35A30, 35D05, 35L60, 35R10
Keywords: partial differential-functional equations; mixed problem; generalized solutions; local existence; bicharacteristics; successive approximations
@article{CMJ_1999_49_4_a9,
     author = {Cz{\l}api\'nski, Tomasz},
     title = {On the mixed problem for hyperbolic partial differential-functional equations of the first order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {791--809},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746704},
     zbl = {1010.35021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a9/}
}
TY  - JOUR
AU  - Człapiński, Tomasz
TI  - On the mixed problem for hyperbolic partial differential-functional equations of the first order
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 791
EP  - 809
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a9/
LA  - en
ID  - CMJ_1999_49_4_a9
ER  - 
%0 Journal Article
%A Człapiński, Tomasz
%T On the mixed problem for hyperbolic partial differential-functional equations of the first order
%J Czechoslovak Mathematical Journal
%D 1999
%P 791-809
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a9/
%G en
%F CMJ_1999_49_4_a9
Człapiński, Tomasz. On the mixed problem for hyperbolic partial differential-functional equations of the first order. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 791-809. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a9/

[1] V. E. Abolina, A. D. Myshkis: Mixed problem for a semilinear hyperbolic system on a plane. Mat. Sb. 50 (1960), 423–442 (Russian).

[2] P. Bassanini: On a boundary value problem for a class of quasilinear hyperbolic systems in two independent variables. Atti Sem. Mat. Fis. Univ. Modena 24 (1975), 343–372. | MR

[3] P. Bassanini: On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form. Boll. Un. Mat. Ital. (5) 14-A (1977), 325–332. | MR | Zbl

[4] P. Bassanini: Iterative methods for quasilinear hyperbolic systems. Boll. Un. Mat. Ital. (6) 1-B (1982), 225–250. | MR | Zbl

[5] P. Bassanini, J. Turo: Generalized solutions of free boundary problems for hyperbolic systems of functional partial differential equations. Ann. Mat. Pura Appl. 156 (1990), 211–230. | DOI | MR

[6] P. Brandi, R. Ceppitelli: Generalized solutions for nonlinear hyperbolic systems in hereditary setting, preprint.

[7] P. Brandi, Z. Kamont, A. Salvadori: Existence of weak solutions for partial differential-functional equations. (to appear).

[8] L. Cesari: A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form. Ann. Sc. Norm. Sup. Pisa (4) 1 (1974), 311–358. | MR

[9] L. Cesari: A boundary value problem for quasilinear hyperbolic systems. Riv. Mat. Univ. Parma 3 (1974), 107–131. | MR

[10] S. Cinquini: Nuove ricerche sui sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Rend. Sem. Mat. Fis. Univ. Milano 52 (1982).

[11] M. Cinquini-Cibrario: Teoremi di esistenza per sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Rend. Ist. Lombardo 104 (1970), 759–829. | MR | Zbl

[12] M. Cinquini-Cibrario: Sopra una classe di sistemi di equazioni non lineari a derivate parziali in più variabili indipendenti. Ann. Mat. Pura. Appl. 140 (1985), 223–253. | DOI | MR

[13] T. Człapiński: On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order. Zeit. Anal. Anwend. 10 (1991), 169–182. | DOI

[14] T. Dzłapiński: On the mixed problem for quasilinear partial differential-functional equations of the first order. Zeit. Anal. Anwend. 16 (1997), 463–478. | DOI

[15] T. Człapiński: Existence of generalized solutions for hyperbolic partial differential-functional equations with delay at derivatives. (to appear).

[16] Z. Kamont, K. Topolski: Mixed problems for quasilinear hyperbolic differential-functional systems. Math. Balk. 6 (1992), 313–324. | MR

[17] A. D. Myshkis; A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables. Diff. Urav. 17 (1981), 488–500. (Russian) | MR | Zbl

[18] A. D. Myshkis, A. M. Filimonov: Continuous solutions of quasilinear hyperbolic systems in two independent variables. Proc. of Sec. Conf. Diff. Equat. and Appl., Rousse (1982), 524–529. (Russian)

[19] J. Turo: On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order. Czechoslovak Math. J. 36 (1986), 185–197. | MR | Zbl

[20] J. Turo: Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables. Ann. Polon. Math. 49 (1989), 259–278. | DOI | MR | Zbl