@article{CMJ_1999_49_4_a5,
author = {Pavlovi\'c, Miroslav},
title = {On harmonic conjugates with exponential mean growth},
journal = {Czechoslovak Mathematical Journal},
pages = {733--742},
year = {1999},
volume = {49},
number = {4},
mrnumber = {1746700},
zbl = {1009.30031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a5/}
}
Pavlović, Miroslav. On harmonic conjugates with exponential mean growth. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 733-742. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a5/
[1] N. Bourbaki: Éléments de mathématique, Fonctions d’une variable réelle. Hermann, Paris, 1949.
[2] C. Fefferman and E. M. Stein: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137–193. | DOI | MR
[3] G. H. Hardy and J. E. Littlewood: Some properties of conjugate functions. J. Reine Angew. Math. 167 (1931), 405–423.
[4] M. Jevtić: Growth of harmonic conjugates in the unit disc. Proc. Amer. Math. Soc. 98 (1986), 41–45. | DOI | MR
[5] M. Mateljević and M. Pavlović: Multipliers of $H^p$ and BMOA. Pacific J. Math. 146 (1990), 71–84. | MR
[6] M. Pavlović: Mean values of harmonic conjugates in the unit disc. Complex Variables 10 (1988), 53–65. | DOI | MR
[7] M. Pavlović: On subharmonic behaviour and oscillation of functions on balls in $R^n$. Publ. Inst. Math. (Belgrade) 55 (1994), 18–22. | MR
[8] A. L. Shields and D. L. Williams: Bounded projections, duality and multipliers in spaces of harmonic functions. J. Reine Angew. Math. 299/300 (1978), 256–279. | MR
[9] A. L. Shields and D. L. Williams: Bounded projections and the growth of harmonic conjugates in the unit disc. Mich. Math. J. 29 (1982), 3–25. | DOI | MR