On harmonic conjugates with exponential mean growth
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 733-742 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 30D55, 30H05, 31A05, 31A20, 42A50
@article{CMJ_1999_49_4_a5,
     author = {Pavlovi\'c, Miroslav},
     title = {On harmonic conjugates with exponential mean growth},
     journal = {Czechoslovak Mathematical Journal},
     pages = {733--742},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746700},
     zbl = {1009.30031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a5/}
}
TY  - JOUR
AU  - Pavlović, Miroslav
TI  - On harmonic conjugates with exponential mean growth
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 733
EP  - 742
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a5/
LA  - en
ID  - CMJ_1999_49_4_a5
ER  - 
%0 Journal Article
%A Pavlović, Miroslav
%T On harmonic conjugates with exponential mean growth
%J Czechoslovak Mathematical Journal
%D 1999
%P 733-742
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a5/
%G en
%F CMJ_1999_49_4_a5
Pavlović, Miroslav. On harmonic conjugates with exponential mean growth. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 733-742. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a5/

[1] N. Bourbaki: Éléments de mathématique, Fonctions d’une variable réelle. Hermann, Paris, 1949.

[2] C. Fefferman and E. M. Stein: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137–193. | DOI | MR

[3] G. H. Hardy and J. E. Littlewood: Some properties of conjugate functions. J. Reine Angew. Math. 167 (1931), 405–423.

[4] M. Jevtić: Growth of harmonic conjugates in the unit disc. Proc. Amer. Math. Soc. 98 (1986), 41–45. | DOI | MR

[5] M. Mateljević and M. Pavlović: Multipliers of $H^p$ and BMOA. Pacific J. Math. 146 (1990), 71–84. | MR

[6] M. Pavlović: Mean values of harmonic conjugates in the unit disc. Complex Variables 10 (1988), 53–65. | DOI | MR

[7] M. Pavlović: On subharmonic behaviour and oscillation of functions on balls in $R^n$. Publ. Inst. Math. (Belgrade) 55 (1994), 18–22. | MR

[8] A. L. Shields and D. L. Williams: Bounded projections, duality and multipliers in spaces of harmonic functions. J. Reine Angew. Math. 299/300 (1978), 256–279. | MR

[9] A. L. Shields and D. L. Williams: Bounded projections and the growth of harmonic conjugates in the unit disc. Mich. Math. J. 29 (1982), 3–25. | DOI | MR