Exact asymptotic behavior of singular values of a class of integral operators
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 707-732 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm{d}y \: L^2 (\Omega )\rightarrow L^2(\Omega )$ ($\Omega \subset \mathbb{R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m} \alpha \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.
We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm{d}y \: L^2 (\Omega )\rightarrow L^2(\Omega )$ ($\Omega \subset \mathbb{R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m} \alpha \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.
Classification : 47B10, 47G10
@article{CMJ_1999_49_4_a4,
     author = {Dostani\'c, Milutin},
     title = {Exact asymptotic behavior of singular values of a class of integral operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {707--732},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746699},
     zbl = {1008.47045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a4/}
}
TY  - JOUR
AU  - Dostanić, Milutin
TI  - Exact asymptotic behavior of singular values of a class of integral operators
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 707
EP  - 732
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a4/
LA  - en
ID  - CMJ_1999_49_4_a4
ER  - 
%0 Journal Article
%A Dostanić, Milutin
%T Exact asymptotic behavior of singular values of a class of integral operators
%J Czechoslovak Mathematical Journal
%D 1999
%P 707-732
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a4/
%G en
%F CMJ_1999_49_4_a4
Dostanić, Milutin. Exact asymptotic behavior of singular values of a class of integral operators. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 707-732. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a4/

[1] M. Š. Birman, M. Z. Solomyak: Asymptotic behavior of the spectrum of weakly polar integral operators. Izv. Akad. Nauk. SSSR, Ser. Mat. Tom 34 (1970), N$^0$5, 1151–1168.

[2] F. Cobos, T. Kühn: Eigenvalues of weakly singular integral operators. J. London Math. Soc. (2) 41 (1990), 323–335. | MR

[3] M. Dostanić: An estimation of singular of convolution operators. Proc. Amer. Math. Soc. 123 (1995), N$^0$5, 1399–1409. | MR

[4] I. C. Gohberg, M. G. Krein: Introduction to the Theory of Linear Nonselfadjoint Operators, in “Translation of Math. monographs” Vol. 18. Amer. Math. Soc., Providence, R.I., 1969. | MR

[5] M. Kac: Distribution of eigenvalues of certain integral operators. Mich. Math. J. 3 (1955/56), 141–148. | DOI | MR

[6] G. P. Kostometov: Asymptotic behavior of the spectrum of integral operators with a singularity on the diagonal. Math. USSR Sb. T 94 (136) N$^0$3 (7), 1974, pp. 445–451. | MR

[7] S. G. Mihlin: Lectures on Mathematics Physics. Moscow, 1968.

[8] C. Oehring: Asymptotics of singular numbers of smooth kernels via trigonometric transforms. J. of Math. Analysis and Applications 145 (1990), 573–605. | DOI | MR | Zbl

[9] J. B. Reade: Asymptotic behavior of eigenvalues of certain integral equations. Proceeding of the Edinburgh Math. Soc. 22 (1979), 137–144. | DOI | MR

[10] M. Rosenblat: Some results on the asymptotic behavior of eigenvalues for a class of integral equations with translations kernels. J. Math. Mech. 12 (1963), 619–628. | MR

[11] S. Y. Rotfeld: Asymptotic of the spectrum of abstract integral operators. Trudy. Moscow Mat. Obšč. T. 34 (1977), 105–128. | MR

[12] S. G. Samko, A. A. Kilbas, O. I. Maricev: Fractional Integrals and Derivative and Some Applications. Minsk, 1987.

[13] E. Seneta: Regularly Varying Functions. Springer Verlag, 1976. | MR | Zbl

[14] H. Widom: Asymptotic behavior of the eigenvalues of certain integral equations. Arch. Rational Mech. Analys. 17 (1964), 215–229. | DOI | MR | Zbl

[15] H. Widom: Asymptotic behavior of the eigenvalues of certain integral equations. Trans. Amer. Math. Soc. 109 (1963), 278–295. | DOI | MR | Zbl