A new class of nonexpansive type mappings and fixed points
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 891-899 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper a new class of self-mappings on metric spaces, which satisfy the nonexpensive type condition (3) below is introduced and investigated. The main result is that such mappings have a unique fixed point. Also, a remetrization theorem, which is converse to Banach contraction principle is given.
In this paper a new class of self-mappings on metric spaces, which satisfy the nonexpensive type condition (3) below is introduced and investigated. The main result is that such mappings have a unique fixed point. Also, a remetrization theorem, which is converse to Banach contraction principle is given.
Classification : 47H09, 47H10, 54H25
Keywords: nonexpansive type mapping; asymptotically regular mapping; fixed point.
@article{CMJ_1999_49_4_a19,
     author = {\'Ciri\'c, Ljubomir B.},
     title = {A new class of nonexpansive type mappings and fixed points},
     journal = {Czechoslovak Mathematical Journal},
     pages = {891--899},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746714},
     zbl = {1003.54024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a19/}
}
TY  - JOUR
AU  - Ćirić, Ljubomir B.
TI  - A new class of nonexpansive type mappings and fixed points
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 891
EP  - 899
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a19/
LA  - en
ID  - CMJ_1999_49_4_a19
ER  - 
%0 Journal Article
%A Ćirić, Ljubomir B.
%T A new class of nonexpansive type mappings and fixed points
%J Czechoslovak Mathematical Journal
%D 1999
%P 891-899
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a19/
%G en
%F CMJ_1999_49_4_a19
Ćirić, Ljubomir B. A new class of nonexpansive type mappings and fixed points. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 891-899. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a19/

[1] J. Bogin: A generalization of a fixed point theorem of Goebel, Kirk and Shimi. Canad. Math. Bull 19 (1976), 7–12. | DOI | MR | Zbl

[2] S.K. Chatterjea: Applications of an extension of a theorem of Fisher on common fixed point. Pure Math. Manuscript 6 (1987), 35–38. | MR | Zbl

[3] Lj. B. Ćirić: On a common fixed point theorem of a Greguš type. Publ. Inst. Math. (Beograd) (N.S.) 49 (63) (1991), 174–178. | MR

[4] Lj. B. Ćirić: On some discontinuous fixed point mappings in convex metric spaces. Czechoslovak Math. J. 43 (118) (1993), 319–326. | MR

[5] Lj. B. Ćirić: On Diviccaro, Fisher and Sessa open questions. Arch. Math. (Brno) 29 (1993), 145–152. | MR

[6] Lj. B. Ćirić: Nonexpansive type mappings and fixed point theorems in convex metric spaces. Rend. Accad. Naz. Sci. XL Mem. Mat. (5), Vol. XIX (1995), 263–271.

[7] Lj. B. Ćirić: On some nonexpansive type mappings and fixed points. Indian J. Pure Appl. Math. 24 (3) (1993), 145–149. | MR

[8] Lj. B. Ćirić: On same mappings in metric space and fixed points. Acad. Roy. Belg. Bull. Cl. Sci. (5) T.VI (1995), 81–89. | MR

[9] D. Delbosco, O. Ferrero and F. Rossati: Teoremi di punto fisso per applicazioni negli spazi di Banach. Boll. Un. Mat. Ital. A. (6) 2 (1993), 297–303. | MR

[10] M. L. Diviccaro, B. Fisher and S. Sessa: A common fixed point theorem of Greguš type. Publ. Math. (Debrecen) 34 (1987), 83–89. | MR

[11] Sh. T. Dzhabbarov: A generalized contraction mapping principle and infinite systems of differential equations. Differentsialnye Uravneniya 26 (1990), no. 8, 1299–1309, 1467 (in Russian). | MR

[12] B. Fisher: Common fixed points on a Banach space. Chung Yuan J. 11 (1982), 19–26.

[13] B. Fisher and S. Sessa: On a fixed point theorem of Greguš. Internat. J. Math. Sci. 9 (1986), 23–28. | DOI | MR

[14] M. Greguš: A fixed point theorem in Banach spaces. Boll. Un. Mat. Ital. A (5) 17 (1980), 193–198.

[15] K. Iseki: On common fixed point theorems of mappings. Proc. Japan Acad. Ser. A Math. Sci. 50 (1974), 408–409. | MR | Zbl

[16] G. Jungck: On a fixed point theorem of Fisher and Sessa. Internat. J. Math. Sci. 13 (1990), 497–500. | DOI | MR | Zbl

[17] B. Y. Li: Fixed point theorems of nonexpansive mappings in convex metric spaces. Appl. Math. Mech. (English Ed.) 10 (1989), 183–188. | DOI

[18] P. R. Meyers: A converse to Banach’s contraction theorem. J. Res. Nat. Bur. Standards, Sect. B 71 (1967), 73–76. | MR | Zbl

[19] R. N. Mukherjee and V. Verma: A note on a fixed point theorem of Greguš. Math. Japon. 33 (1988), 745–749. | MR

[20] P. Omari, G. Villari and F. Zanolin: A survey of recent applications of fixed point theory to periodic solutions of the Lienard equations, Fixed point theory and its applications. (Berkley, CA 1986), 171–178, Contemp. Math. 72, Amer. Math. Soc., Providence, RI, 1988. | MR

[21] B. E. Rhoades: A generalization of a fixed point theorem of Bogin. Math. Sem. Notes, Kobe Univ. 6 (1978), 1–7. | MR | Zbl

[22] B. E. Rhoades: Some applications of contractive type mappings. Math. Sem. Notes, Kobe Univ. 5 (1977), 137–139. | MR | Zbl

[23] Md. Shahabuddin: Study of applications of Banach’s fixed point theorem. Chittagong Univ. Stud., Part II Sci. 11 (1987), 85–91. | MR

[24] A. Weiczorek: Applications of fixed point theorems in game theory and mathematical economics (Polish). Wiadom. Mat. 28 (1988), 25–34. | MR