On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 877-890 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of $n$th order with complex coefficients $M[y] - \lambda wy = wf (t, y^{[0]}, \ldots ,y^{[n-1]})$, $t\in [a,b)$ provided that all $r$th quasi-derivatives of solutions of $M[y] - \lambda w y = 0$ and all solutions of its normal adjoint $M^+[z] - \bar{\lambda } w z = 0$ are in $L^2_w (a,b)$ and under suitable conditions on the function $f$.
This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of $n$th order with complex coefficients $M[y] - \lambda wy = wf (t, y^{[0]}, \ldots ,y^{[n-1]})$, $t\in [a,b)$ provided that all $r$th quasi-derivatives of solutions of $M[y] - \lambda w y = 0$ and all solutions of its normal adjoint $M^+[z] - \bar{\lambda } w z = 0$ are in $L^2_w (a,b)$ and under suitable conditions on the function $f$.
Classification : 34A05, 34A25, 34B15, 34B25, 34C11, 34E10, 34E15, 34G10, 34M45, 47A55, 47E05
Keywords: quasi-differential operators; regular; singular; bounded and square integrable solutions
@article{CMJ_1999_49_4_a18,
     author = {Ibrahim, Sobhy El-sayed},
     title = {On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {877--890},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746713},
     zbl = {1015.34002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a18/}
}
TY  - JOUR
AU  - Ibrahim, Sobhy El-sayed
TI  - On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 877
EP  - 890
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a18/
LA  - en
ID  - CMJ_1999_49_4_a18
ER  - 
%0 Journal Article
%A Ibrahim, Sobhy El-sayed
%T On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations
%J Czechoslovak Mathematical Journal
%D 1999
%P 877-890
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a18/
%G en
%F CMJ_1999_49_4_a18
Ibrahim, Sobhy El-sayed. On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 877-890. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a18/

[1] J.S. Bradley: Comparison theorems for the square integrability of solutions of $(r(t)y^{\prime })^{\prime } + q(t) y = f(t,y)$. Glasgow Math., Soc. 13 (1972), 75–79. | DOI | MR | Zbl

[2] D.E. Edmunds and W.D. Evans: Spectral Theory and Differential Operators (Oxford University) Press. 1987. | MR

[3] W.N. Everitt and D. Race: Some remarks on linear ordinary quasi-differential expressions. Proc. London Math. Soc. (3) 54 (1987), 300–320. | MR

[4] R.C. Gilbert: Simplicity of linear ordinary differential operators. Journal of Differential Equations 11 (1972), 672–681. | DOI | MR | Zbl

[5] S. Goldberg: Unbounded Linear Operators. McGraw. Hill, New York, 1966. | MR | Zbl

[6] H.E. Gollwitzer: A note on functional inequality. Proc. Amer. Math. Soc. 23 (1969), 642–647. | DOI | MR

[7] M.R. Mohana Rao: Ordinary Differential Equations. (Theory and Applications); First Published in the United Kingdom in 1989 by Edward Arnold (Publishers) Limited, London.

[8] M.N. Naimark: Linear Differential Operators. (G.I.T.T.L., Moscow, 1954), Ungar, New York, Vol. I (1967), Vol. II (1968). | Zbl

[9] Sobhy El-sayed Ibrahim: Problems associated with differential operators. Ph.D. thesis (1989), Faculty of Sciences, Department of Mathematics, Benha University, Egypt.

[10] Sobhy El-sayed Ibrahim: Boundedness for solutions of general ordinary quasi-differential equations. Journal of the Egyptian Mathematical Society 2 (1994), 33–44. | MR | Zbl

[11] Sobhy El-sayed Ibrahim: The spectra of well-posed operators. Proc. Royal Soc. of Edinburgh 124A (1995), 1331–1348. | MR

[12] D. Willett: Nonlinear vector integral equations as contraction mappings. Arch. Rational Mech. Anal. 15 (1964), 79–86. | DOI | MR | Zbl

[13] D. Willett and J.S.W. Wong: On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69 (1965), 362–367 MR 32 $\ne $ 2644. | DOI | MR

[14] J.S.W. Wong: Square integrable solutions of perturbed linear differential equations. Proc. Royal Society of Edinburgh 73A, 16 (1974/75), 251–254. | MR

[15] A. Zettl: Square integrable solutions of $Ly = f(t,y)$. Proceedings of the American Mathematical Society 26 (1970), 635–639. | MR | Zbl

[16] A. Zettl: Perturbation of the limit circle case. Quart. J. Math., Oxford (3) 26 (1975), 355–360. | DOI | MR | Zbl

[17] A. Zettl: Formally self-adjoint quasi-differential operators. Rocky Mountain Journal of Mathematics (3) 5 (1975), 453–474. | DOI | MR