Keywords: quasi-differential operators; regular; singular; bounded and square integrable solutions
@article{CMJ_1999_49_4_a18,
author = {Ibrahim, Sobhy El-sayed},
title = {On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {877--890},
year = {1999},
volume = {49},
number = {4},
mrnumber = {1746713},
zbl = {1015.34002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a18/}
}
TY - JOUR AU - Ibrahim, Sobhy El-sayed TI - On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations JO - Czechoslovak Mathematical Journal PY - 1999 SP - 877 EP - 890 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a18/ LA - en ID - CMJ_1999_49_4_a18 ER -
Ibrahim, Sobhy El-sayed. On $L^2_w$-quasi-derivatives for solutions of perturbed general quasi-differential equations. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 877-890. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a18/
[1] J.S. Bradley: Comparison theorems for the square integrability of solutions of $(r(t)y^{\prime })^{\prime } + q(t) y = f(t,y)$. Glasgow Math., Soc. 13 (1972), 75–79. | DOI | MR | Zbl
[2] D.E. Edmunds and W.D. Evans: Spectral Theory and Differential Operators (Oxford University) Press. 1987. | MR
[3] W.N. Everitt and D. Race: Some remarks on linear ordinary quasi-differential expressions. Proc. London Math. Soc. (3) 54 (1987), 300–320. | MR
[4] R.C. Gilbert: Simplicity of linear ordinary differential operators. Journal of Differential Equations 11 (1972), 672–681. | DOI | MR | Zbl
[5] S. Goldberg: Unbounded Linear Operators. McGraw. Hill, New York, 1966. | MR | Zbl
[6] H.E. Gollwitzer: A note on functional inequality. Proc. Amer. Math. Soc. 23 (1969), 642–647. | DOI | MR
[7] M.R. Mohana Rao: Ordinary Differential Equations. (Theory and Applications); First Published in the United Kingdom in 1989 by Edward Arnold (Publishers) Limited, London.
[8] M.N. Naimark: Linear Differential Operators. (G.I.T.T.L., Moscow, 1954), Ungar, New York, Vol. I (1967), Vol. II (1968). | Zbl
[9] Sobhy El-sayed Ibrahim: Problems associated with differential operators. Ph.D. thesis (1989), Faculty of Sciences, Department of Mathematics, Benha University, Egypt.
[10] Sobhy El-sayed Ibrahim: Boundedness for solutions of general ordinary quasi-differential equations. Journal of the Egyptian Mathematical Society 2 (1994), 33–44. | MR | Zbl
[11] Sobhy El-sayed Ibrahim: The spectra of well-posed operators. Proc. Royal Soc. of Edinburgh 124A (1995), 1331–1348. | MR
[12] D. Willett: Nonlinear vector integral equations as contraction mappings. Arch. Rational Mech. Anal. 15 (1964), 79–86. | DOI | MR | Zbl
[13] D. Willett and J.S.W. Wong: On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69 (1965), 362–367 MR 32 $\ne $ 2644. | DOI | MR
[14] J.S.W. Wong: Square integrable solutions of perturbed linear differential equations. Proc. Royal Society of Edinburgh 73A, 16 (1974/75), 251–254. | MR
[15] A. Zettl: Square integrable solutions of $Ly = f(t,y)$. Proceedings of the American Mathematical Society 26 (1970), 635–639. | MR | Zbl
[16] A. Zettl: Perturbation of the limit circle case. Quart. J. Math., Oxford (3) 26 (1975), 355–360. | DOI | MR | Zbl
[17] A. Zettl: Formally self-adjoint quasi-differential operators. Rocky Mountain Journal of Mathematics (3) 5 (1975), 453–474. | DOI | MR